You are viewing documentation about an older version (1.0.9). View latest version

snowflake.ml.modeling.decomposition.MiniBatchDictionaryLearning

class snowflake.ml.modeling.decomposition.MiniBatchDictionaryLearning(*, n_components=None, alpha=1, n_iter='deprecated', max_iter=None, fit_algorithm='lars', n_jobs=None, batch_size=256, shuffle=True, dict_init=None, transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, verbose=False, split_sign=False, random_state=None, positive_code=False, positive_dict=False, transform_max_iter=1000, callback=None, tol=0.001, max_no_improvement=10, input_cols: Optional[Union[str, Iterable[str]]] = None, output_cols: Optional[Union[str, Iterable[str]]] = None, label_cols: Optional[Union[str, Iterable[str]]] = None, drop_input_cols: Optional[bool] = False, sample_weight_col: Optional[str] = None)

Bases: BaseTransformer

Mini-batch dictionary learning For more details on this class, see sklearn.decomposition.MiniBatchDictionaryLearning

n_components: int, default=None

Number of dictionary elements to extract.

alpha: float, default=1

Sparsity controlling parameter.

n_iter: int, default=1000

Total number of iterations over data batches to perform.

max_iter: int, default=None

Maximum number of iterations over the complete dataset before stopping independently of any early stopping criterion heuristics. If max_iter is not None, n_iter is ignored.

fit_algorithm: {‘lars’, ‘cd’}, default=’lars’

The algorithm used:

  • ‘lars’: uses the least angle regression method to solve the lasso problem (linear_model.lars_path)

  • ‘cd’: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

n_jobs: int, default=None

Number of parallel jobs to run. None means 1 unless in a joblib.parallel_backend context. -1 means using all processors. See Glossary for more details.

batch_size: int, default=256

Number of samples in each mini-batch.

shuffle: bool, default=True

Whether to shuffle the samples before forming batches.

dict_init: ndarray of shape (n_components, n_features), default=None

Initial value of the dictionary for warm restart scenarios.

transform_algorithm: {‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’}, default=’omp’

Algorithm used to transform the data:

  • ‘lars’: uses the least angle regression method (linear_model.lars_path);

  • ‘lasso_lars’: uses Lars to compute the Lasso solution.

  • ‘lasso_cd’: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). ‘lasso_lars’ will be faster if the estimated components are sparse.

  • ‘omp’: uses orthogonal matching pursuit to estimate the sparse solution.

  • ‘threshold’: squashes to zero all coefficients less than alpha from the projection dictionary * X'.

transform_n_nonzero_coefs: int, default=None

Number of nonzero coefficients to target in each column of the solution. This is only used by algorithm=’lars’ and algorithm=’omp’. If None, then transform_n_nonzero_coefs=int(n_features / 10).

transform_alpha: float, default=None

If algorithm=’lasso_lars’ or algorithm=’lasso_cd’, alpha is the penalty applied to the L1 norm. If algorithm=’threshold’, alpha is the absolute value of the threshold below which coefficients will be squashed to zero. If None, defaults to alpha.

verbose: bool or int, default=False

To control the verbosity of the procedure.

split_sign: bool, default=False

Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers.

random_state: int, RandomState instance or None, default=None

Used for initializing the dictionary when dict_init is not specified, randomly shuffling the data when shuffle is set to True, and updating the dictionary. Pass an int for reproducible results across multiple function calls. See Glossary.

positive_code: bool, default=False

Whether to enforce positivity when finding the code.

positive_dict: bool, default=False

Whether to enforce positivity when finding the dictionary.

transform_max_iter: int, default=1000

Maximum number of iterations to perform if algorithm=’lasso_cd’ or ‘lasso_lars’.

callback: callable, default=None

A callable that gets invoked at the end of each iteration.

tol: float, default=1e-3

Control early stopping based on the norm of the differences in the dictionary between 2 steps. Used only if max_iter is not None.

To disable early stopping based on changes in the dictionary, set tol to 0.0.

max_no_improvement: int, default=10

Control early stopping based on the consecutive number of mini batches that does not yield an improvement on the smoothed cost function. Used only if max_iter is not None.

To disable convergence detection based on cost function, set max_no_improvement to None.

input_cols: Optional[Union[str, List[str]]]

A string or list of strings representing column names that contain features. If this parameter is not specified, all columns in the input DataFrame except the columns specified by label_cols and sample-weight_col parameters are considered input columns.

label_cols: Optional[Union[str, List[str]]]

A string or list of strings representing column names that contain labels. This is a required param for estimators, as there is no way to infer these columns. If this parameter is not specified, then object is fitted without labels(Like a transformer).

output_cols: Optional[Union[str, List[str]]]

A string or list of strings representing column names that will store the output of predict and transform operations. The length of output_cols mus match the expected number of output columns from the specific estimator or transformer class used. If this parameter is not specified, output column names are derived by adding an OUTPUT_ prefix to the label column names. These inferred output column names work for estimator’s predict() method, but output_cols must be set explicitly for transformers.

sample_weight_col: Optional[str]

A string representing the column name containing the examples’ weights. This argument is only required when working with weighted datasets.

drop_input_cols: Optional[bool], default=False

If set, the response of predict(), transform() methods will not contain input columns.

Methods

fit(dataset)

Fit the model from data in X For more details on this function, see sklearn.decomposition.MiniBatchDictionaryLearning.fit

score(dataset)

Method not supported for this class.

set_input_cols(input_cols)

Input columns setter.

to_sklearn()

Get sklearn.decomposition.MiniBatchDictionaryLearning object.

transform(dataset)

Encode the data as a sparse combination of the dictionary atoms For more details on this function, see sklearn.decomposition.MiniBatchDictionaryLearning.transform

Attributes

model_signatures

Returns model signature of current class.