modin.pandas.to_numeric¶
- modin.pandas.to_numeric(arg: Scalar | Series | ArrayConvertible, errors: Literal['ignore', 'raise', 'coerce'] = 'raise', downcast: Literal['integer', 'signed', 'unsigned', 'float'] | None = None) Series | Scalar | None[source]¶
- Convert argument to a numeric type. - If the input arg type is already a numeric type, the return dtype will be the original type; otherwise, the return dtype is float. - Parameters:
- arg (scalar, list, tuple, 1-d array, or Series) – Argument to be converted. 
- errors ({'ignore', 'raise', 'coerce'}, default 'raise') – - If ‘raise’, then invalid parsing will raise an exception. 
- If ‘coerce’, then invalid parsing will be set as NaN. 
- If ‘ignore’, then invalid parsing will return the input. 
 
- downcast (str, default None) – downcast is ignored in Snowflake backend. 
 
- Returns:
- Numeric if parsing succeeded. Return type depends on input. Series if arg is not scalar. 
- Return type:
- ret 
 - See also - DataFrame.astype
- Cast argument to a specified dtype. 
- to_datetime
- Convert argument to datetime. 
- to_timedelta
- Convert argument to timedelta. 
- numpy.ndarray.astype
- Cast a numpy array to a specified type. 
- DataFrame.convert_dtypes
- Convert dtypes. 
 - Examples - Take separate series and convert to numeric, coercing when told to - >>> s = pd.Series(['1.0', '2', -3]) >>> pd.to_numeric(s) 0 1.0 1 2.0 2 -3.0 dtype: float64 - Note: to_numeric always converts non-numeric values to floats >>> s = pd.Series([‘1’, ‘2’, ‘-3’]) >>> pd.to_numeric(s) 0 1.0 1 2.0 2 -3.0 dtype: float64 >>> pd.to_numeric(s, downcast=’float’) # downcast is ignored 0 1.0 1 2.0 2 -3.0 dtype: float64 >>> pd.to_numeric(s, downcast=’signed’) # downcast is ignored 0 1.0 1 2.0 2 -3.0 dtype: float64 >>> s = pd.Series([‘apple’, ‘1.0’, ‘2’, -3]) >>> pd.to_numeric(s, errors=’coerce’) 0 NaN 1 1.0 2 2.0 3 -3.0 dtype: float64