You are viewing documentation about an older version (1.2.0). View latest version

snowflake.ml.modeling.manifold.SpectralEmbeddingΒΆ

class snowflake.ml.modeling.manifold.SpectralEmbedding(*, n_components=2, affinity='nearest_neighbors', gamma=None, random_state=None, eigen_solver=None, eigen_tol='auto', n_neighbors=None, n_jobs=None, input_cols: Optional[Union[str, Iterable[str]]] = None, output_cols: Optional[Union[str, Iterable[str]]] = None, label_cols: Optional[Union[str, Iterable[str]]] = None, passthrough_cols: Optional[Union[str, Iterable[str]]] = None, drop_input_cols: Optional[bool] = False, sample_weight_col: Optional[str] = None)ΒΆ

Bases: BaseTransformer

Spectral embedding for non-linear dimensionality reduction For more details on this class, see sklearn.manifold.SpectralEmbedding

input_cols: Optional[Union[str, List[str]]]

A string or list of strings representing column names that contain features. If this parameter is not specified, all columns in the input DataFrame except the columns specified by label_cols, sample_weight_col, and passthrough_cols parameters are considered input columns. Input columns can also be set after initialization with the set_input_cols method.

label_cols: Optional[Union[str, List[str]]]

This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.

output_cols: Optional[Union[str, List[str]]]

A string or list of strings representing column names that will store the output of predict and transform operations. The length of output_cols must match the expected number of output columns from the specific predictor or transformer class used. If you omit this parameter, output column names are derived by adding an OUTPUT_ prefix to the label column names for supervised estimators, or OUTPUT_<IDX>for unsupervised estimators. These inferred output column names work for predictors, but output_cols must be set explicitly for transformers. In general, explicitly specifying output column names is clearer, especially if you don’t specify the input column names. To transform in place, pass the same names for input_cols and output_cols. be set explicitly for transformers. Output columns can also be set after initialization with the set_output_cols method.

sample_weight_col: Optional[str]

A string representing the column name containing the sample weights. This argument is only required when working with weighted datasets. Sample weight column can also be set after initialization with the set_sample_weight_col method.

passthrough_cols: Optional[Union[str, List[str]]]

A string or a list of strings indicating column names to be excluded from any operations (such as train, transform, or inference). These specified column(s) will remain untouched throughout the process. This option is helpful in scenarios requiring automatic input_cols inference, but need to avoid using specific columns, like index columns, during training or inference. Passthrough columns can also be set after initialization with the set_passthrough_cols method.

drop_input_cols: Optional[bool], default=False

If set, the response of predict(), transform() methods will not contain input columns.

n_components: int, default=2

The dimension of the projected subspace.

affinity: {β€˜nearest_neighbors’, β€˜rbf’, β€˜precomputed’, β€˜precomputed_nearest_neighbors’} or callable, default=’nearest_neighbors’
How to construct the affinity matrix.
  • β€˜nearest_neighbors’: construct the affinity matrix by computing a graph of nearest neighbors.

  • β€˜rbf’: construct the affinity matrix by computing a radial basis function (RBF) kernel.

  • β€˜precomputed’: interpret X as a precomputed affinity matrix.

  • β€˜precomputed_nearest_neighbors’: interpret X as a sparse graph of precomputed nearest neighbors, and constructs the affinity matrix by selecting the n_neighbors nearest neighbors.

  • callable: use passed in function as affinity the function takes in data matrix (n_samples, n_features) and return affinity matrix (n_samples, n_samples).

gamma: float, default=None

Kernel coefficient for rbf kernel. If None, gamma will be set to 1/n_features.

random_state: int, RandomState instance or None, default=None

A pseudo random number generator used for the initialization of the lobpcg eigen vectors decomposition when eigen_solver == β€˜amg’, and for the K-Means initialization. Use an int to make the results deterministic across calls (See Glossary).

eigen_solver: {β€˜arpack’, β€˜lobpcg’, β€˜amg’}, default=None

The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems. If None, then 'arpack' is used.

eigen_tol: float, default=”auto”

Stopping criterion for eigendecomposition of the Laplacian matrix. If eigen_tol=”auto” then the passed tolerance will depend on the eigen_solver:

  • If eigen_solver=”arpack”, then eigen_tol=0.0;

  • If eigen_solver=”lobpcg” or eigen_solver=”amg”, then eigen_tol=None which configures the underlying lobpcg solver to automatically resolve the value according to their heuristics. See, scipy.sparse.linalg.lobpcg() for details.

Note that when using eigen_solver=”lobpcg” or eigen_solver=”amg” values of tol<1e-5 may lead to convergence issues and should be avoided.

n_neighbors: int, default=None

Number of nearest neighbors for nearest_neighbors graph building. If None, n_neighbors will be set to max(n_samples/10, 1).

n_jobs: int, default=None

The number of parallel jobs to run. None means 1 unless in a joblib.parallel_backend context. -1 means using all processors. See Glossary for more details.

Base class for all transformers.

Methods

fit(dataset: Union[DataFrame, DataFrame]) β†’ SpectralEmbeddingΒΆ

Fit the model from data in X For more details on this function, see sklearn.manifold.SpectralEmbedding.fit

Raises:

TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.

Args:
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]

Snowpark or Pandas DataFrame.

Returns:

self

fit_transform(dataset: Union[DataFrame, DataFrame]) β†’ Union[Any, ndarray[Any, dtype[Any]]]ΒΆ
Returns:

Transformed dataset.

get_input_cols() β†’ List[str]ΒΆ

Input columns getter.

Returns:

Input columns.

get_label_cols() β†’ List[str]ΒΆ

Label column getter.

Returns:

Label column(s).

get_output_cols() β†’ List[str]ΒΆ

Output columns getter.

Returns:

Output columns.

get_params(deep: bool = True) β†’ Dict[str, Any]ΒΆ

Get parameters for this transformer.

Args:
deep: If True, will return the parameters for this transformer and

contained subobjects that are transformers.

Returns:

Parameter names mapped to their values.

get_passthrough_cols() β†’ List[str]ΒΆ

Passthrough columns getter.

Returns:

Passthrough column(s).

get_sample_weight_col() β†’ Optional[str]ΒΆ

Sample weight column getter.

Returns:

Sample weight column.

get_sklearn_args(default_sklearn_obj: Optional[object] = None, sklearn_initial_keywords: Optional[Union[str, Iterable[str]]] = None, sklearn_unused_keywords: Optional[Union[str, Iterable[str]]] = None, snowml_only_keywords: Optional[Union[str, Iterable[str]]] = None, sklearn_added_keyword_to_version_dict: Optional[Dict[str, str]] = None, sklearn_added_kwarg_value_to_version_dict: Optional[Dict[str, Dict[str, str]]] = None, sklearn_deprecated_keyword_to_version_dict: Optional[Dict[str, str]] = None, sklearn_removed_keyword_to_version_dict: Optional[Dict[str, str]] = None) β†’ Dict[str, Any]ΒΆ

Get sklearn keyword arguments.

This method enables modifying object parameters for special cases.

Args:
default_sklearn_obj: Sklearn object used to get default parameter values. Necessary when

sklearn_added_keyword_to_version_dict is provided.

sklearn_initial_keywords: Initial keywords in sklearn. sklearn_unused_keywords: Sklearn keywords that are unused in snowml. snowml_only_keywords: snowml only keywords not present in sklearn. sklearn_added_keyword_to_version_dict: Added keywords mapped to the sklearn versions in which they were

added.

sklearn_added_kwarg_value_to_version_dict: Added keyword argument values mapped to the sklearn versions

in which they were added.

sklearn_deprecated_keyword_to_version_dict: Deprecated keywords mapped to the sklearn versions in which

they were deprecated.

sklearn_removed_keyword_to_version_dict: Removed keywords mapped to the sklearn versions in which they

were removed.

Returns:

Sklearn parameter names mapped to their values.

set_drop_input_cols(drop_input_cols: Optional[bool] = False) β†’ NoneΒΆ
set_input_cols(input_cols: Optional[Union[str, Iterable[str]]]) β†’ SpectralEmbeddingΒΆ

Input columns setter.

Args:

input_cols: A single input column or multiple input columns.

Returns:

self

set_label_cols(label_cols: Optional[Union[str, Iterable[str]]]) β†’ BaseΒΆ

Label column setter.

Args:

label_cols: A single label column or multiple label columns if multi task learning.

Returns:

self

set_output_cols(output_cols: Optional[Union[str, Iterable[str]]]) β†’ BaseΒΆ

Output columns setter.

Args:

output_cols: A single output column or multiple output columns.

Returns:

self

set_params(**params: Dict[str, Any]) β†’ NoneΒΆ

Set the parameters of this transformer.

The method works on simple transformers as well as on nested objects. The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Args:

**params: Transformer parameter names mapped to their values.

Raises:

SnowflakeMLException: Invalid parameter keys.

set_passthrough_cols(passthrough_cols: Optional[Union[str, Iterable[str]]]) β†’ BaseΒΆ

Passthrough columns setter.

Args:
passthrough_cols: Column(s) that should not be used or modified by the estimator/transformer.

Estimator/Transformer just passthrough these columns without any modifications.

Returns:

self

set_sample_weight_col(sample_weight_col: Optional[str]) β†’ BaseΒΆ

Sample weight column setter.

Args:

sample_weight_col: A single column that represents sample weight.

Returns:

self

to_sklearn() β†’ AnyΒΆ

Get sklearn.manifold.SpectralEmbedding object.

Attributes

model_signaturesΒΆ

Returns model signature of current class.

Raises:

exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred

Returns:

Dict[str, ModelSignature]: each method and its input output signature