snowflake.ml.modeling.neural_network.MLPClassifierΒΆ
- class snowflake.ml.modeling.neural_network.MLPClassifier(*, hidden_layer_sizes=(100,), activation='relu', solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no_change=10, max_fun=15000, input_cols: Optional[Union[str, Iterable[str]]] = None, output_cols: Optional[Union[str, Iterable[str]]] = None, label_cols: Optional[Union[str, Iterable[str]]] = None, passthrough_cols: Optional[Union[str, Iterable[str]]] = None, drop_input_cols: Optional[bool] = False, sample_weight_col: Optional[str] = None)ΒΆ
Bases:
BaseTransformer
Multi-layer Perceptron classifier For more details on this class, see sklearn.neural_network.MLPClassifier
- input_cols: Optional[Union[str, List[str]]]
A string or list of strings representing column names that contain features. If this parameter is not specified, all columns in the input DataFrame except the columns specified by label_cols, sample_weight_col, and passthrough_cols parameters are considered input columns. Input columns can also be set after initialization with the set_input_cols method.
- label_cols: Optional[Union[str, List[str]]]
A string or list of strings representing column names that contain labels. Label columns must be specified with this parameter during initialization or with the set_label_cols method before fitting.
- output_cols: Optional[Union[str, List[str]]]
A string or list of strings representing column names that will store the output of predict and transform operations. The length of output_cols must match the expected number of output columns from the specific predictor or transformer class used. If you omit this parameter, output column names are derived by adding an OUTPUT_ prefix to the label column names for supervised estimators, or OUTPUT_<IDX>for unsupervised estimators. These inferred output column names work for predictors, but output_cols must be set explicitly for transformers. In general, explicitly specifying output column names is clearer, especially if you donβt specify the input column names. To transform in place, pass the same names for input_cols and output_cols. be set explicitly for transformers. Output columns can also be set after initialization with the set_output_cols method.
- sample_weight_col: Optional[str]
A string representing the column name containing the sample weights. This argument is only required when working with weighted datasets. Sample weight column can also be set after initialization with the set_sample_weight_col method.
- passthrough_cols: Optional[Union[str, List[str]]]
A string or a list of strings indicating column names to be excluded from any operations (such as train, transform, or inference). These specified column(s) will remain untouched throughout the process. This option is helpful in scenarios requiring automatic input_cols inference, but need to avoid using specific columns, like index columns, during training or inference. Passthrough columns can also be set after initialization with the set_passthrough_cols method.
- drop_input_cols: Optional[bool], default=False
If set, the response of predict(), transform() methods will not contain input columns.
- hidden_layer_sizes: array-like of shape(n_layers - 2,), default=(100,)
The ith element represents the number of neurons in the ith hidden layer.
- activation: {βidentityβ, βlogisticβ, βtanhβ, βreluβ}, default=βreluβ
Activation function for the hidden layer.
βidentityβ, no-op activation, useful to implement linear bottleneck, returns f(x) = x
βlogisticβ, the logistic sigmoid function, returns f(x) = 1 / (1 + exp(-x)).
βtanhβ, the hyperbolic tan function, returns f(x) = tanh(x).
βreluβ, the rectified linear unit function, returns f(x) = max(0, x)
- solver: {βlbfgsβ, βsgdβ, βadamβ}, default=βadamβ
The solver for weight optimization.
βlbfgsβ is an optimizer in the family of quasi-Newton methods.
βsgdβ refers to stochastic gradient descent.
βadamβ refers to a stochastic gradient-based optimizer proposed by Kingma, Diederik, and Jimmy Ba
Note: The default solver βadamβ works pretty well on relatively large datasets (with thousands of training samples or more) in terms of both training time and validation score. For small datasets, however, βlbfgsβ can converge faster and perform better.
- alpha: float, default=0.0001
Strength of the L2 regularization term. The L2 regularization term is divided by the sample size when added to the loss.
- batch_size: int, default=βautoβ
Size of minibatches for stochastic optimizers. If the solver is βlbfgsβ, the classifier will not use minibatch. When set to βautoβ, batch_size=min(200, n_samples).
- learning_rate: {βconstantβ, βinvscalingβ, βadaptiveβ}, default=βconstantβ
Learning rate schedule for weight updates.
βconstantβ is a constant learning rate given by βlearning_rate_initβ.
βinvscalingβ gradually decreases the learning rate at each time step βtβ using an inverse scaling exponent of βpower_tβ. effective_learning_rate = learning_rate_init / pow(t, power_t)
βadaptiveβ keeps the learning rate constant to βlearning_rate_initβ as long as training loss keeps decreasing. Each time two consecutive epochs fail to decrease training loss by at least tol, or fail to increase validation score by at least tol if βearly_stoppingβ is on, the current learning rate is divided by 5.
Only used when
solver='sgd'
.- learning_rate_init: float, default=0.001
The initial learning rate used. It controls the step-size in updating the weights. Only used when solver=βsgdβ or βadamβ.
- power_t: float, default=0.5
The exponent for inverse scaling learning rate. It is used in updating effective learning rate when the learning_rate is set to βinvscalingβ. Only used when solver=βsgdβ.
- max_iter: int, default=200
Maximum number of iterations. The solver iterates until convergence (determined by βtolβ) or this number of iterations. For stochastic solvers (βsgdβ, βadamβ), note that this determines the number of epochs (how many times each data point will be used), not the number of gradient steps.
- shuffle: bool, default=True
Whether to shuffle samples in each iteration. Only used when solver=βsgdβ or βadamβ.
- random_state: int, RandomState instance, default=None
Determines random number generation for weights and bias initialization, train-test split if early stopping is used, and batch sampling when solver=βsgdβ or βadamβ. Pass an int for reproducible results across multiple function calls. See Glossary.
- tol: float, default=1e-4
Tolerance for the optimization. When the loss or score is not improving by at least
tol
forn_iter_no_change
consecutive iterations, unlesslearning_rate
is set to βadaptiveβ, convergence is considered to be reached and training stops.- verbose: bool, default=False
Whether to print progress messages to stdout.
- warm_start: bool, default=False
When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. See the Glossary.
- momentum: float, default=0.9
Momentum for gradient descent update. Should be between 0 and 1. Only used when solver=βsgdβ.
- nesterovs_momentum: bool, default=True
Whether to use Nesterovβs momentum. Only used when solver=βsgdβ and momentum > 0.
- early_stopping: bool, default=False
Whether to use early stopping to terminate training when validation score is not improving. If set to true, it will automatically set aside 10% of training data as validation and terminate training when validation score is not improving by at least tol for
n_iter_no_change
consecutive epochs. The split is stratified, except in a multilabel setting. If early stopping is False, then the training stops when the training loss does not improve by more than tol for n_iter_no_change consecutive passes over the training set. Only effective when solver=βsgdβ or βadamβ.- validation_fraction: float, default=0.1
The proportion of training data to set aside as validation set for early stopping. Must be between 0 and 1. Only used if early_stopping is True.
- beta_1: float, default=0.9
Exponential decay rate for estimates of first moment vector in adam, should be in [0, 1). Only used when solver=βadamβ.
- beta_2: float, default=0.999
Exponential decay rate for estimates of second moment vector in adam, should be in [0, 1). Only used when solver=βadamβ.
- epsilon: float, default=1e-8
Value for numerical stability in adam. Only used when solver=βadamβ.
- n_iter_no_change: int, default=10
Maximum number of epochs to not meet
tol
improvement. Only effective when solver=βsgdβ or βadamβ.- max_fun: int, default=15000
Only used when solver=βlbfgsβ. Maximum number of loss function calls. The solver iterates until convergence (determined by βtolβ), number of iterations reaches max_iter, or this number of loss function calls. Note that number of loss function calls will be greater than or equal to the number of iterations for the MLPClassifier.
Base class for all transformers.
Methods
- fit(dataset: Union[DataFrame, DataFrame]) MLPClassifier ΒΆ
Fit the model to data matrix X and target(s) y For more details on this function, see sklearn.neural_network.MLPClassifier.fit
- Raises:
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
- Args:
- dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
Snowpark or Pandas DataFrame.
- Returns:
self
- fit_transform(dataset: Union[DataFrame, DataFrame]) Union[Any, ndarray[Any, dtype[Any]]] ΒΆ
- Returns:
Transformed dataset.
- get_input_cols() List[str] ΒΆ
Input columns getter.
- Returns:
Input columns.
- get_label_cols() List[str] ΒΆ
Label column getter.
- Returns:
Label column(s).
- get_output_cols() List[str] ΒΆ
Output columns getter.
- Returns:
Output columns.
- get_params(deep: bool = True) Dict[str, Any] ΒΆ
Get parameters for this transformer.
- Args:
- deep: If True, will return the parameters for this transformer and
contained subobjects that are transformers.
- Returns:
Parameter names mapped to their values.
- get_passthrough_cols() List[str] ΒΆ
Passthrough columns getter.
- Returns:
Passthrough column(s).
- get_sample_weight_col() Optional[str] ΒΆ
Sample weight column getter.
- Returns:
Sample weight column.
- get_sklearn_args(default_sklearn_obj: Optional[object] = None, sklearn_initial_keywords: Optional[Union[str, Iterable[str]]] = None, sklearn_unused_keywords: Optional[Union[str, Iterable[str]]] = None, snowml_only_keywords: Optional[Union[str, Iterable[str]]] = None, sklearn_added_keyword_to_version_dict: Optional[Dict[str, str]] = None, sklearn_added_kwarg_value_to_version_dict: Optional[Dict[str, Dict[str, str]]] = None, sklearn_deprecated_keyword_to_version_dict: Optional[Dict[str, str]] = None, sklearn_removed_keyword_to_version_dict: Optional[Dict[str, str]] = None) Dict[str, Any] ΒΆ
Get sklearn keyword arguments.
This method enables modifying object parameters for special cases.
- Args:
- default_sklearn_obj: Sklearn object used to get default parameter values. Necessary when
sklearn_added_keyword_to_version_dict is provided.
sklearn_initial_keywords: Initial keywords in sklearn. sklearn_unused_keywords: Sklearn keywords that are unused in snowml. snowml_only_keywords: snowml only keywords not present in sklearn. sklearn_added_keyword_to_version_dict: Added keywords mapped to the sklearn versions in which they were
added.
- sklearn_added_kwarg_value_to_version_dict: Added keyword argument values mapped to the sklearn versions
in which they were added.
- sklearn_deprecated_keyword_to_version_dict: Deprecated keywords mapped to the sklearn versions in which
they were deprecated.
- sklearn_removed_keyword_to_version_dict: Removed keywords mapped to the sklearn versions in which they
were removed.
- Returns:
Sklearn parameter names mapped to their values.
- predict(dataset: Union[DataFrame, DataFrame]) Union[DataFrame, DataFrame] ΒΆ
Predict using the multi-layer perceptron classifier For more details on this function, see sklearn.neural_network.MLPClassifier.predict
- Raises:
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
- Args:
- dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
Snowpark or Pandas DataFrame.
- Returns:
Transformed dataset.
- predict_log_proba(dataset: Union[DataFrame, DataFrame], output_cols_prefix: str = 'predict_log_proba_') Union[DataFrame, DataFrame] ΒΆ
Probability estimates For more details on this function, see sklearn.neural_network.MLPClassifier.predict_proba
- Raises:
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
- Args:
- dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
Snowpark or Pandas DataFrame.
- output_cols_prefix: str
Prefix for the response columns
- Returns:
Output dataset with log probability of the sample for each class in the model.
- predict_proba(dataset: Union[DataFrame, DataFrame], output_cols_prefix: str = 'predict_proba_') Union[DataFrame, DataFrame] ΒΆ
Probability estimates For more details on this function, see sklearn.neural_network.MLPClassifier.predict_proba
- Raises:
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
- Args:
- dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
Snowpark or Pandas DataFrame.
output_cols_prefix: Prefix for the response columns
- Returns:
Output dataset with probability of the sample for each class in the model.
- score(dataset: Union[DataFrame, DataFrame]) float ΒΆ
Return the mean accuracy on the given test data and labels For more details on this function, see sklearn.neural_network.MLPClassifier.score
- Raises:
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
- Args:
- dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
Snowpark or Pandas DataFrame.
- Returns:
Score.
- score_samples(dataset: Union[DataFrame, DataFrame], output_cols_prefix: str = 'score_samples_') Union[DataFrame, DataFrame] ΒΆ
Method not supported for this class.
- Raises:
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
- Args:
- dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
Snowpark or Pandas DataFrame.
output_cols_prefix: Prefix for the response columns
- Returns:
Output dataset with probability of the sample for each class in the model.
- set_drop_input_cols(drop_input_cols: Optional[bool] = False) None ΒΆ
- set_input_cols(input_cols: Optional[Union[str, Iterable[str]]]) MLPClassifier ΒΆ
Input columns setter.
- Args:
input_cols: A single input column or multiple input columns.
- Returns:
self
- set_label_cols(label_cols: Optional[Union[str, Iterable[str]]]) Base ΒΆ
Label column setter.
- Args:
label_cols: A single label column or multiple label columns if multi task learning.
- Returns:
self
- set_output_cols(output_cols: Optional[Union[str, Iterable[str]]]) Base ΒΆ
Output columns setter.
- Args:
output_cols: A single output column or multiple output columns.
- Returns:
self
- set_params(**params: Dict[str, Any]) None ΒΆ
Set the parameters of this transformer.
The method works on simple transformers as well as on nested objects. The latter have parameters of the form
<component>__<parameter>
so that itβs possible to update each component of a nested object.- Args:
**params: Transformer parameter names mapped to their values.
- Raises:
SnowflakeMLException: Invalid parameter keys.
- set_passthrough_cols(passthrough_cols: Optional[Union[str, Iterable[str]]]) Base ΒΆ
Passthrough columns setter.
- Args:
- passthrough_cols: Column(s) that should not be used or modified by the estimator/transformer.
Estimator/Transformer just passthrough these columns without any modifications.
- Returns:
self
- set_sample_weight_col(sample_weight_col: Optional[str]) Base ΒΆ
Sample weight column setter.
- Args:
sample_weight_col: A single column that represents sample weight.
- Returns:
self
- to_sklearn() Any ΒΆ
Get sklearn.neural_network.MLPClassifier object.
Attributes
- model_signaturesΒΆ
Returns model signature of current class.
- Raises:
exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
- Returns:
Dict[str, ModelSignature]: each method and its input output signature