snowflake.ml.model.model_signature.FeatureSpec¶
- class snowflake.ml.model.model_signature.FeatureSpec(name: str, dtype: DataType, shape: Optional[Tuple[int, ...]] = None)¶
 Bases:
BaseFeatureSpecSpecification of a feature in Snowflake native model packaging.
Initialize a feature.
- Parameters:
 name – Name of the feature.
dtype – Type of the elements in the feature.
shape –
Used to represent scalar feature, 1-d feature list, or n-d tensor. Use -1 to represent variable length. Defaults to None.
Examples
None: scalar
(2,): 1d list with a fixed length of 2.
(-1,): 1d list with variable length, used for ragged tensor representation.
(d1, d2, d3): 3d tensor.
- Raises:
 SnowflakeMLException – TypeError: When the dtype input type is incorrect.
SnowflakeMLException – TypeError: When the shape input type is incorrect.
Methods
- as_dtype() Union[dtype[Any], None, Type[Any], _SupportsDType[dtype[Any]], str, Tuple[Any, int], Tuple[Any, Union[SupportsIndex, Sequence[SupportsIndex]]], List[Any], _DTypeDict, Tuple[Any, Any]]¶
 Convert to corresponding local Type.
- as_snowpark_type() DataType¶
 Convert to corresponding Snowpark Type.
- classmethod from_dict(input_dict: Dict[str, Any]) FeatureSpec¶
 Deserialize the feature specification from a dict.
- Parameters:
 input_dict – The dict containing information of the feature specification.
- Returns:
 A feature specification instance deserialized and created from the dict.
- classmethod from_mlflow_spec(input_spec: Union[mlflow.types.ColSpec, mlflow.types.TensorSpec], feature_name: str) FeatureSpec¶
 
- to_dict() Dict[str, Any]¶
 Serialize the feature group into a dict.
- Returns:
 A dict that serializes the feature group.
Attributes
- name¶
 Name of the feature.