modin.pandas.SeriesGroupBy.indices¶
- property SeriesGroupBy.indices: dict[collections.abc.Hashable, numpy.ndarray[Any, numpy.dtype[numpy.int64]]][source]¶
- Get a dictionary mapping group key to row positions. - Returns:
- Dict {group name -> group positions}. 
- Return type:
- Dict[Any, np.array] 
 - Examples - >>> df = pd.DataFrame({'A': [1, 1, 2, 1, 2], ... 'B': [np.nan, 2, 3, 4, 5], ... 'C': [1, 2, 1, 1, 2]}) - Groupby one column and get the positions of each member of each group. - >>> df.groupby('A').indices {1: array([0, 1, 3]), 2: array([2, 4])} - Group the same dataframe with a different index. The result is the same because the row positions for each group are the same. - >>> df.set_index('B').groupby('A').indices {1: array([0, 1, 3]), 2: array([2, 4])} - Notes - Beware that the return value is a python dictionary, so evaluating this property will trigger evaluation of the pandas dataframe and will materialize data that could be as large as the size of the grouping columns.