You are viewing documentation about an older version (1.22.1). View latest version

modin.pandas.Series.bfill¶

Series.bfill(*, axis=None, inplace=False, limit=None, limit_area=None, downcast=_NoDefault.no_default)[source]¶

Fill NA/NaN values by using the next valid observation to fill the gap.

Parameters:
  • axis ({0 or ‘index’} for Series, {0 or ‘index’, 1 or ‘columns’} for DataFrame) – Axis along which to fill missing values. For Series this parameter is unused and defaults to 0.

  • inplace (bool, default False) – If True, fill in-place. Note: this will modify any other views on this object (e.g., a no-copy slice for a column in a DataFrame).

  • limit (int, default None) – If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None.

  • limit_area ({None, ‘inside’, ‘outside’}, default None) – If limit is specified, consecutive NaNs will be filled with this restriction. - None: No fill restriction. - ‘inside’: Only fill NaNs surrounded by valid values (interpolate). - ‘outside’: Only fill NaNs outside valid values (extrapolate).

  • 2.2.0. (Deprecated since version) –

  • downcast (dict, default is None) – A dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible).

  • 2.2.0. –

Returns:

Object with missing values filled or None if inplace=True.

Return type:

Series/DataFrame or None

Examples

For Series:

>>> s = pd.Series([1, None, None, 2])
>>> s.bfill()
0    1.0
1    2.0
2    2.0
3    2.0
dtype: float64
>>> s.bfill(limit=1)
0    1.0
1    NaN
2    2.0
3    2.0
dtype: float64
Copy

With DataFrame:

>>> df = pd.DataFrame({'A': [1, None, None, 4], 'B': [None, 5, None, 7]})
>>> df
     A    B
0  1.0  NaN
1  NaN  5.0
2  NaN  NaN
3  4.0  7.0
>>> df.bfill()
     A    B
0  1.0  5.0
1  4.0  5.0
2  4.0  7.0
3  4.0  7.0
>>> df.bfill(limit=1)
     A    B
0  1.0  5.0
1  NaN  5.0
2  4.0  7.0
3  4.0  7.0
Copy