modin.pandas.Series.drop_duplicates¶

Series.drop_duplicates(*, keep='first', inplace=False, ignore_index=False) → Optional[Series][source]¶

Return Series with duplicate values removed.

Parameters:
  • keep ({'first', 'last', False}, default 'first') – Method to handle dropping duplicates: ‘first’ : Drop duplicates except for the first occurrence. ‘last’ : Drop duplicates except for the last occurrence. False : Drop all duplicates.

  • inplace (bool, default False) – If True, performs operation inplace and returns None.

  • ignore_index (bool, default False) – If True, the resulting axis will be labeled 0, 1, …, n - 1.

Returns:

Series with duplicates dropped or None if inplace=True.

Return type:

Series or None

Examples

Generate a Series with duplicated entries.

>>> s = pd.Series(['llama', 'cow', 'llama', 'beetle', 'llama', 'hippo'],
...                 name='animal')
>>> s
0     llama
1       cow
2     llama
3    beetle
4     llama
5     hippo
Name: animal, dtype: object
Copy

With the ‘keep’ parameter, the selection behaviour of duplicated values can be changed. The value ‘first’ keeps the first occurrence for each set of duplicated entries. The default value of keep is ‘first’.

>>> s.drop_duplicates()
0     llama
1       cow
3    beetle
5     hippo
Name: animal, dtype: object
Copy

The value ‘last’ for parameter ‘keep’ keeps the last occurrence for each set of duplicated entries.

>>> s.drop_duplicates(keep='last')
1       cow
3    beetle
4     llama
5     hippo
Name: animal, dtype: object
Copy

The value False for parameter ‘keep’ discards all sets of duplicated entries.

>>> s.drop_duplicates(keep=False)
1       cow
3    beetle
5     hippo
Name: animal, dtype: object
Copy