modin.pandas.DataFrame.stack¶
- DataFrame.stack(level=- 1, dropna=_NoDefault.no_default, sort=_NoDefault.no_default, future_stack=False) Union[DataFrame, Series][source]¶
Stack the prescribed level(s) from columns to index.
Return a reshaped DataFrame or Series having a multi-level index with one or more new inner-most levels compared to the current DataFrame. The new inner-most levels are created by pivoting the columns of the current dataframe. If the columns have a single level, the output is a Series. If the columns have multiple levels, the new index level(s) is (are) taken from the prescribed level(s) and the output is a DataFrame.
- Parameters:
level (int, str, list, default -1) – Level(s) to stack from the column axis onto the index axis, defined as one index or label, or a list of indices or labels.
dropna (bool, default True) – Whether to drop rows in the resulting Frame/Series with missing values. Stacking a column level onto the index axis can create combinations of index and column values that are missing from the original dataframe.
sort (bool, default True) – Whether to sort the levels of the resulting MultiIndex.
future_stack (bool, default False) – This argument is ignored in Snowpark pandas.
- Returns:
Stacked dataframe or series.
- Return type:
Notes
level != -1 and MultiIndex dataframes are not yet supported by Snowpark pandas.
See also
DataFrame.unstackUnstack prescribed level(s) from index axis onto column axis.
DataFrame.pivotReshape dataframe from long format to wide format.
DataFrame.pivot_tableCreate a spreadsheet-style pivot table as a DataFrame.
Examples
>>> df_single_level_cols = pd.DataFrame([[0, 1], [2, 3]], index=['cat', 'dog'], columns=['weight', 'height']) >>> df_single_level_cols weight height cat 0 1 dog 2 3 >>> df_single_level_cols.stack() cat weight 0 height 1 dog weight 2 height 3 dtype: int64