modin.pandas.DataFrame.where¶
- DataFrame.where(cond, other=nan, *, inplace=False, axis=None, level=None) Optional[DataFrame][source]¶
- Replace values where the condition is False. - Parameters:
- cond – bool Series/DataFrame, array-like, or callable Where cond is True, keep the original value. Where False, replace with corresponding value from other. If cond is callable, it is computed on the Series/DataFrame and should return boolean Series/DataFrame or array. The callable must not change input Series/DataFrame (though pandas doesn’t check it). 
- other – scalar, Series/DataFrame, or callable Entries where cond is False are replaced with corresponding value from other. If other is callable, it is computed on the Series/DataFrame and should return scalar or Series/DataFrame. The callable must not change input Series/DataFrame (though pandas doesn’t check it). If not specified, entries will be filled with the corresponding NULL value (np.nan for numpy dtypes, pd.NA for extension dtypes). 
- inplace – bool, default False Whether to perform the operation in place on the data. 
- axis – int, default None Alignment axis if needed. For Series this parameter is unused and defaults to 0. 
- level – int, default None Alignment level if needed. 
 
- Returns:
- Same type as caller or None if inplace=True. 
 - Notes - The where method is an application of the if-then idiom. For each element in the calling DataFrame, if cond is True the element is used; otherwise the corresponding element from the DataFrame other is used. If the axis of other does not align with axis of cond Series/DataFrame, the misaligned index positions will be filled with False. - The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m, df2) is equivalent to np.where(m, df1, df2). - For further details and examples see the where documentation in indexing. - The dtype of the object takes precedence. The fill value is cast to the object’s dtype, if this can be done losslessly. - Examples: - >>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B']) - >>> df A B 0 0 1 1 2 3 2 4 5 3 6 7 4 8 9 - >>> m = df % 3 == 0 >>> df.where(m, -df) A B 0 0 -1 1 -2 3 2 -4 -5 3 6 -7 4 -8 9 - Snowpark pandas DataFrame.where behaves the same as numpy.where. - >>> data = np.where(m, df, -df) >>> df.where(m, -df) == pd.DataFrame(data, columns=['A', 'B']) A B 0 True True 1 True True 2 True True 3 True True 4 True True - >>> df.where(m, -df) == df.mask(~m, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True