modin.pandas.bdate_range¶
- modin.pandas.bdate_range(start: VALID_DATE_TYPE | None = None, end: VALID_DATE_TYPE | None = None, periods: int | None = None, freq: Frequency | str | pd.DateOffset | dt.timedelta | None = 'B', tz: str | tzinfo | None = None, normalize: bool = True, name: Hashable | None = None, weekmask: str | None = None, holidays: ListLike | None = None, inclusive: IntervalClosedType = 'both', **kwargs) pd.DatetimeIndex [source]¶
Return a fixed frequency DatetimeIndex with business day as the default.
- Parameters:
start (str or datetime-like, default None) – Left bound for generating dates.
end (str or datetime-like, default None) – Right bound for generating dates.
periods (int, default None) – Number of periods to generate.
freq (str, Timedelta, datetime.timedelta, or DateOffset, default 'B') – Frequency strings can have multiples, e.g. ‘5h’. The default is business daily (‘B’).
tz (str or None) – Time zone name for returning localized DatetimeIndex, for example Asia/Beijing.
normalize (bool, default False) – Normalize start/end dates to midnight before generating date range.
name (str, default None) – Name of the resulting DatetimeIndex.
weekmask (str or None, default None) – Weekmask of valid business days, passed to
numpy.busdaycalendar
, only used when custom frequency strings are passed. The default value None is equivalent to ‘Mon Tue Wed Thu Fri’.holidays (list-like or None, default None) – Dates to exclude from the set of valid business days, passed to
numpy.busdaycalendar
, only used when custom frequency strings are passed.inclusive ({"both", "neither", "left", "right"}, default "both") –
Include boundaries; Whether to set each bound as closed or open.
New in version 1.4.0.
**kwargs – For compatibility. Has no effect on the result.
- Return type:
Notes
Of the four parameters:
start
,end
,periods
, andfreq
, exactly three must be specified. Specifyingfreq
is a requirement forbdate_range
. Usedate_range
if specifyingfreq
is not desired.To learn more about the frequency strings, please see this link.
Examples
Note how the two weekend days are skipped in the result.
>>> pd.bdate_range(start='1/1/2018', end='1/08/2018') DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04', '2018-01-05', '2018-01-08'], dtype='datetime64[ns]', freq=None)