Tutorial: Bulk loading from a local file system using COPY¶
This tutorial describes how to load data from files in your local file system into a table.
Introduction¶
In this tutorial, you will learn how to:
Create named file format objects that describe your data files.
Create named stage objects.
Upload your data to the internal stages.
Load your data into tables.
Resolve errors in your data files.
The tutorial covers how to load both CSV and JSON data using SnowSQL.
Prerequisites¶
The tutorial assumes the following:
You have a Snowflake account and a user with a role that grants the necessary privileges to create a database, tables, and virtual warehouse objects.
You have SnowSQL installed.
The Snowflake in 20 minutes tutorial provides the related step-by-step instructions to meet these requirements.
In addition, you need to do the following before you start the tutorial:
Download sample files provided for this exercise.
Create a database, tables, and a virtual warehouse for this tutorial. These are the basic Snowflake objects needed for most Snowflake activities.
Downloading the sample data files¶
For this tutorial you need to download the sample data files provided by Snowflake.
To download and unzip the sample data files:
Right-click the name of the archive file,
data-load-internal.zip
and save the link/file to your local file system.Unzip the sample files. The tutorial assumes you unpacked files in to the following directories:
Linux/macOS:
/tmp/load
Windows:
C:\tempload
These data files include sample contact data in the following formats:
CSV files that contain a header row and five records. The field delimiter is the pipe (
|
) character. The following example shows a header row and one record:ID|lastname|firstname|company|email|workphone|cellphone|streetaddress|city|postalcode 6|Reed|Moses|Neque Corporation|eget.lacus@facilisis.com|1-449-871-0780|1-454-964-5318|Ap #225-4351 Dolor Ave|Titagarh|62631
A single file in JSON format that contains one array and three objects. The following is an example of an array that contains one of the objects:
[ { "customer": { "address": "509 Kings Hwy, Comptche, Missouri, 4848", "phone": "+1 (999) 407-2274", "email": "blankenship.patrick@orbin.ca", "company": "ORBIN", "name": { "last": "Patrick", "first": "Blankenship" }, "_id": "5730864df388f1d653e37e6f" } }, ]
Creating the database, tables, and warehouse¶
Execute the following statements to create a database, two tables (for csv and json data), and a virtual warehouse needed for this tutorial. After you complete the tutorial, you can drop these objects.
-- Create a database. A database automatically includes a schema named 'public'. CREATE OR REPLACE DATABASE mydatabase; /* Create target tables for CSV and JSON data. The tables are temporary, meaning they persist only for the duration of the user session and are not visible to other users. */ CREATE OR REPLACE TEMPORARY TABLE mycsvtable ( id INTEGER, last_name STRING, first_name STRING, company STRING, email STRING, workphone STRING, cellphone STRING, streetaddress STRING, city STRING, postalcode STRING); CREATE OR REPLACE TEMPORARY TABLE myjsontable ( json_data VARIANT); -- Create a warehouse CREATE OR REPLACE WAREHOUSE mywarehouse WITH WAREHOUSE_SIZE='X-SMALL' AUTO_SUSPEND = 120 AUTO_RESUME = TRUE INITIALLY_SUSPENDED=TRUE;
The CREATE WAREHOUSE
statement sets up the warehouse to be suspended initially.
The statement also sets AUTO_RESUME = true
, which starts the warehouse automatically
when you execute SQL statements that require compute resources.
Create file format objects¶
When you load data from a file into a table, you must describe the format of the file and specify how the data in the file should be interpreted and processed. For example, if you are loading pipe-delimited data from a CSV file, you must specify that the file uses the CSV format with pipe symbols as delimiters.
When you execute the COPY INTO <table> command, you specify this format information. You can
either specify this information as options in the command (e.g.
TYPE = CSV
, FIELD_DELIMITER = '|'
, etc.) or you can specify a
file format object that contains this format information. You can create a named file
format object using the CREATE FILE FORMAT command.
In this step, you create file format objects describing the data format of the sample CSV and JSON data provided for this tutorial.
Creating a file format object for CSV data¶
Execute the CREATE FILE FORMAT command
to create the mycsvformat
file format.
CREATE OR REPLACE FILE FORMAT mycsvformat
TYPE = 'CSV'
FIELD_DELIMITER = '|'
SKIP_HEADER = 1;
Where:
TYPE = 'CSV'
indicates the source file format type. CSV is the default file format type.FIELD_DELIMITER = '|'
indicates the ‘|’ character is a field separator. The default value is ‘,’.SKIP_HEADER = 1
indicates the source file includes one header line. The COPY command skips these header lines when loading data. The default value is 0.
Creating a file format object for JSON data¶
Execute the CREATE FILE FORMAT command to create
the myjsonformat
file format.
CREATE OR REPLACE FILE FORMAT myjsonformat
TYPE = 'JSON'
STRIP_OUTER_ARRAY = TRUE;
Where:
TYPE = 'JSON'
indicates the source file format type.STRIP_OUTER_ARRAY = TRUE
directs the COPY command to exclude the root brackets ([]) when loading data to the table.
Create stage objects¶
A stage specifies where data files are stored (i.e. “staged”) so that the data in the files can be loaded into a table. A named internal stage is a cloud storage location managed by Snowflake.
Creating a named stage is useful if you want multiple users or processes to upload files. If you plan to stage data files to load only by you, or to load only into a single table, then you may prefer to use your user stage or the table stage. For information, see Bulk loading from a local file system.
In this step, you create named stages for the different types of sample data files.
Creating a stage for CSV data files¶
Execute CREATE STAGE to create the my_csv_stage
stage:
CREATE OR REPLACE STAGE my_csv_stage
FILE_FORMAT = mycsvformat;
Note that if you specify the FILE_FORMAT
option when creating
the stage, it is not necessary to specify the same FILE_FORMAT
option in the COPY command used to load data from the stage.
Creating a stage for JSON data files¶
Execute CREATE STAGE to create the my_json_stage
stage:
CREATE OR REPLACE STAGE my_json_stage
FILE_FORMAT = myjsonformat;
Stage the data files¶
Execute PUT to upload (stage) sample data files from your local file system to the stages you created in Tutorial: Bulk loading from a local file system using COPY.
Staging the CSV sample data files¶
Execute the PUT command to upload the CSV files from your local file system.
Linux or macOS
PUT file:///tmp/load/contacts*.csv @my_csv_stage AUTO_COMPRESS=TRUE;
Windows
PUT file://C:\temp\load\contacts*.csv @my_csv_stage AUTO_COMPRESS=TRUE;
Let us take a closer look at the command:
file://<file-path>[/]contacts*.csv
specifies the full directory path and names of the files on your local machine to stage. Note that file system wildcards are allowed.@my_csv_stage
is the stage name where to stage the data.auto_compress=true;
directs the command to compress the data when staging. This is also the default.
The command returns the following result, showing the staged files:
+---------------+------------------+-------------+-------------+--------------------+--------------------+----------+---------+
| source | target | source_size | target_size | source_compression | target_compression | status | message |
|---------------+------------------+-------------+-------------+--------------------+--------------------+----------+---------|
| contacts1.csv | contacts1.csv.gz | 694 | 506 | NONE | GZIP | UPLOADED | |
| contacts2.csv | contacts2.csv.gz | 763 | 565 | NONE | GZIP | UPLOADED | |
| contacts3.csv | contacts3.csv.gz | 771 | 567 | NONE | GZIP | UPLOADED | |
| contacts4.csv | contacts4.csv.gz | 750 | 561 | NONE | GZIP | UPLOADED | |
| contacts5.csv | contacts5.csv.gz | 887 | 621 | NONE | GZIP | UPLOADED | |
+---------------+------------------+-------------+-------------+--------------------+--------------------+----------+---------+
Staging the JSON sample data files¶
Execute the PUT command to upload the JSON file from your local file system to the named stage.
Linux or macOS
PUT file:///tmp/load/contacts.json @my_json_stage AUTO_COMPRESS=TRUE;
Windows
PUT file://C:\temp\load\contacts.json @my_json_stage AUTO_COMPRESS=TRUE;
The command returns the following result, showing the staged files:
+---------------+------------------+-------------+-------------+--------------------+--------------------+----------+---------+
| source | target | source_size | target_size | source_compression | target_compression | status | message |
|---------------+------------------+-------------+-------------+--------------------+--------------------+----------+---------|
| contacts.json | contacts.json.gz | 965 | 446 | NONE | GZIP | UPLOADED | |
+---------------+------------------+-------------+-------------+--------------------+--------------------+----------+---------+
List the staged files (optional)¶
You can list the staged files by using the LIST command.
CSV¶
LIST @my_csv_stage;
Snowflake returns a list of your staged files.
JSON¶
LIST @my_json_stage;
Snowflake returns a list of your staged files.
Copy data into the target tables¶
Execute COPY INTO <table> to load staged data into the target tables.
CSV¶
To load the data from the sample CSV files:
Start by loading the data from one of the files (
contacts1.csv.gz
). Execute the following:COPY INTO mycsvtable FROM @my_csv_stage/contacts1.csv.gz FILE_FORMAT = (FORMAT_NAME = mycsvformat) ON_ERROR = 'skip_file';
Where:
The
FROM
clause specifies the location of the staged data file (stage name followed by the file name).The
ON_ERROR
clause specifies what to do when the COPY command encounters errors in the files. By default, the command stops loading data when the first error is encountered; however, we’ve instructed it to skip any file containing an error and move on to loading the next file. Note that this is just for illustration purposes; none of the files in this tutorial contain errors.
The COPY command returns a result showing the name of the file copied and related information:
+-----------------------------+--------+-------------+-------------+-------------+-------------+-------------+------------------+-----------------------+-------------------------+ | file | status | rows_parsed | rows_loaded | error_limit | errors_seen | first_error | first_error_line | first_error_character | first_error_column_name | |-----------------------------+--------+-------------+-------------+-------------+-------------+-------------+------------------+-----------------------+-------------------------| | mycsvtable/contacts1.csv.gz | LOADED | 5 | 5 | 1 | 0 | NULL | NULL | NULL | NULL | +-----------------------------+--------+-------------+-------------+-------------+-------------+-------------+------------------+-----------------------+-------------------------+
Load the rest of the staged files in the
mycsvtable
table.The following example uses pattern matching to load data from all files that match the regular expression
.*contacts[1-5].csv.gz
into themycsvtable
table.COPY INTO mycsvtable FROM @my_csv_stage FILE_FORMAT = (FORMAT_NAME = mycsvformat) PATTERN='.*contacts[1-5].csv.gz' ON_ERROR = 'skip_file';
Where the
PATTERN
clause specifies that the command should load data from the filenames matching this regular expression(.*employees0[1-5].csv.gz)
.The COPY command returns a result showing the name of the file copied and related information:
+-----------------------------+-------------+-------------+-------------+-------------+-------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------+------------------+-----------------------+-------------------------+ | file | status | rows_parsed | rows_loaded | error_limit | errors_seen | first_error | first_error_line | first_error_character | first_error_column_name | |-----------------------------+-------------+-------------+-------------+-------------+-------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------+------------------+-----------------------+-------------------------| | mycsvtable/contacts2.csv.gz | LOADED | 5 | 5 | 1 | 0 | NULL | NULL | NULL | NULL | | mycsvtable/contacts3.csv.gz | LOAD_FAILED | 5 | 0 | 1 | 2 | Number of columns in file (11) does not match that of the corresponding table (10), use file format option error_on_column_count_mismatch=false to ignore this error | 3 | 1 | "MYCSVTABLE"[11] | | mycsvtable/contacts4.csv.gz | LOADED | 5 | 5 | 1 | 0 | NULL | NULL | NULL | NULL | | mycsvtable/contacts5.csv.gz | LOADED | 6 | 6 | 1 | 0 | NULL | NULL | NULL | NULL | +-----------------------------+-------------+-------------+-------------+-------------+-------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------+------------------+-----------------------+-------------------------+
Note the following highlights in the result:
The data in
contacts1.csv.gz
is ignored because you already loaded the data successfully.The data in these files was loaded successfully:
contacts2.csv.gz
,contacts4.csv.gz
, andcontacts5.csv.gz
.The data in
contacts3.csv.gz
was skipped due to 2 data errors. The next step in this tutorial addresses how to validate and fix the errors.
JSON¶
Load the contacts.json.gz
staged data file into the myjsontable
table.
COPY INTO myjsontable
FROM @my_json_stage/contacts.json.gz
FILE_FORMAT = (FORMAT_NAME = myjsonformat)
ON_ERROR = 'skip_file';
The COPY command returns a result showing the name of the file copied and related information:
+------------------------------+--------+-------------+-------------+-------------+-------------+-------------+------------------+-----------------------+-------------------------+
| file | status | rows_parsed | rows_loaded | error_limit | errors_seen | first_error | first_error_line | first_error_character | first_error_column_name |
|------------------------------+--------+-------------+-------------+-------------+-------------+-------------+------------------+-----------------------+-------------------------|
| myjsontable/contacts.json.gz | LOADED | 3 | 3 | 1 | 0 | NULL | NULL | NULL | NULL |
+------------------------------+--------+-------------+-------------+-------------+-------------+-------------+------------------+-----------------------+-------------------------+
Resolve data load errors¶
In the preceding step, the COPY INTO command skipped loading one of the files when it encountered the first error. You need to find all the errors and fix them. In this step, you use the VALIDATE function to validate the previous execution of the COPY INTO command and returns all errors.
Validate the sample data files and retrieve any errors¶
You first need the query ID associated with the COPY INTO command
that you previously executed. You then call the VALIDATE
function,
specifying the query ID.
Retrieve the query ID.
Sign in to Snowsight.
Make sure the role in Snowsight is the same as the role you are using in SnowSQL to run SQL statements for this tutorial.
Select Monitoring » Query History.
Select the row for the specific COPY INTO command to open the query information pane.
Copy the Query ID value.
Validate the COPY INTO command execution, represented by the query ID, and save errors to a new table named
save_copy_errors
.In SnowSQL, execute the following command. Replace
query_id
with the Query ID value.CREATE OR REPLACE TABLE save_copy_errors AS SELECT * FROM TABLE(VALIDATE(mycsvtable, JOB_ID=>'<query_id>'));
Query the
save_copy_errors
table.SELECT * FROM SAVE_COPY_ERRORS;
The query returns the following results:
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------+------+-----------+-------------+----------+--------+-----------+-------------------------------+------------+----------------+-----------------------------------------------------------------------------------------------------------------------------------------------------+ | ERROR | FILE | LINE | CHARACTER | BYTE_OFFSET | CATEGORY | CODE | SQL_STATE | COLUMN_NAME | ROW_NUMBER | ROW_START_LINE | REJECTED_RECORD | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------+------+-----------+-------------+----------+--------+-----------+-------------------------------+------------+----------------+-----------------------------------------------------------------------------------------------------------------------------------------------------| | Number of columns in file (11) does not match that of the corresponding table (10), use file format option error_on_column_count_mismatch=false to ignore this error | mycsvtable/contacts3.csv.gz | 3 | 1 | 234 | parsing | 100080 | 22000 | "MYCSVTABLE"[11] | 1 | 2 | 11|Ishmael|Burnett|Dolor Elit Pellentesque Ltd|vitae.erat@necmollisvitae.ca|1-872|600-7301|1-513-592-6779|P.O. Box 975, 553 Odio, Road|Hulste|63345 | | Field delimiter '|' found while expecting record delimiter '\n' | mycsvtable/contacts3.csv.gz | 5 | 125 | 625 | parsing | 100016 | 22000 | "MYCSVTABLE"["POSTALCODE":10] | 4 | 5 | 14|Sophia|Christian|Turpis Ltd|lectus.pede@non.ca|1-962-503-3253|1-157-|850-3602|P.O. Box 824, 7971 Sagittis Rd.|Chattanooga|56188 | +----------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------+------+-----------+-------------+----------+--------+-----------+-------------------------------+------------+----------------+-----------------------------------------------------------------------------------------------------------------------------------------------------+
The result shows two data errors in mycsvtable/contacts3.csv.gz
:
Number of columns in file (11) does not match that of the corresponding table (10)
In Row 1, a hyphen was mistakenly replaced with the pipe (
|
) character, the data file delimiter, effectively creating an additional column in the record.Field delimiter '|' found while expecting record delimiter 'n'
In Row 5, an additional pipe (
|
) character was introduced after a hyphen, breaking the record.
Fix the errors and load the data files again¶
Fix the errors in the records manually in the
contacts3.csv
file in your local environment.Use the PUT command to upload the modified data file to the stage. The modified file overwrites the existing staged file.
Linux or macOS:
PUT file:///tmp/load/contacts3.csv @my_csv_stage AUTO_COMPRESS=TRUE OVERWRITE=TRUE;
Windows:
PUT file://C:\temp\load\contacts3.csv @my_csv_stage AUTO_COMPRESS=TRUE OVERWRITE=TRUE;
Copy the data from the staged files into the tables.
COPY INTO mycsvtable FROM @my_csv_stage/contacts3.csv.gz FILE_FORMAT = (FORMAT_NAME = mycsvformat) ON_ERROR = 'skip_file';
Snowflake returns the following results, indicating the data in contacts3.csv.gz
was loaded successfully.
+-----------------------------+--------+-------------+-------------+-------------+-------------+-------------+------------------+-----------------------+-------------------------+ | file | status | rows_parsed | rows_loaded | error_limit | errors_seen | first_error | first_error_line | first_error_character | first_error_column_name | |-----------------------------+--------+-------------+-------------+-------------+-------------+-------------+------------------+-----------------------+-------------------------| | mycsvtable/contacts3.csv.gz | LOADED | 5 | 5 | 1 | 0 | NULL | NULL | NULL | NULL | +-----------------------------+--------+-------------+-------------+-------------+-------------+-------------+------------------+-----------------------+-------------------------+
Verify the loaded data¶
Execute a SELECT query to verify that the data was loaded successfully.
CSV¶
SELECT * FROM mycsvtable;
The query returns the following results:
+----+-----------+------------+----------------------------------+----------------------------------------+----------------+----------------+---------------------------------+------------------+------------+ | ID | LAST_NAME | FIRST_NAME | COMPANY | EMAIL | WORKPHONE | CELLPHONE | STREETADDRESS | CITY | POSTALCODE | |----+-----------+------------+----------------------------------+----------------------------------------+----------------+----------------+---------------------------------+------------------+------------| | 6 | Reed | Moses | Neque Corporation | eget.lacus@facilisis.com | 1-449-871-0780 | 1-454-964-5318 | Ap #225-4351 Dolor Ave | Titagarh | 62631 | | 7 | Audrey | Franks | Arcu Eu Limited | eu.dui@aceleifendvitae.org | 1-527-945-8935 | 1-263-127-1173 | Ap #786-9241 Mauris Road | Bergen | 81958 | | 8 | Jakeem | Erickson | A Ltd | Pellentesque.habitant@liberoProinmi.ca | 1-381-591-9386 | 1-379-391-9490 | 319-1703 Dis Rd. | Pangnirtung | 62399 | | 9 | Xaviera | Brennan | Bibendum Ullamcorper Limited | facilisi.Sed.neque@dictum.edu | 1-260-757-1919 | 1-211-651-0925 | P.O. Box 146, 8385 Vel Road | Béziers | 13082 | | 10 | Francis | Ortega | Vitae Velit Egestas Associates | egestas.rhoncus.Proin@faucibus.com | 1-257-584-6487 | 1-211-870-2111 | 733-7191 Neque Rd. | Chatillon | 33081 | | 16 | Aretha | Sykes | Lobortis Tellus Justo Foundation | eget@Naminterdumenim.net | 1-670-849-1866 | 1-283-783-3710 | Ap #979-2481 Dui. Av. | Thurso | 66851 | | 17 | Akeem | Casey | Pharetra Quisque Ac Institute | dictum.eu@magna.edu | 1-277-657-0361 | 1-623-630-8848 | Ap #363-6074 Ullamcorper, Rd. | Idar-Oberstei | 30848 | | 18 | Keelie | Mendez | Purus In Foundation | Nulla.eu.neque@Aeneanegetmetus.co.uk | 1-330-370-8231 | 1-301-568-0413 | 3511 Tincidunt Street | Lanklaar | 73942 | | 19 | Lane | Bishop | Libero At PC | non@dapibusligula.ca | 1-340-862-4623 | 1-513-820-9039 | 7459 Pede. Street | Linkebeek | 89252 | | 20 | Michelle | Dickson | Ut Limited | Duis.dignissim.tempor@cursuset.org | 1-202-490-0151 | 1-129-553-7398 | 6752 Eros. St. | Stornaway | 61290 | | 20 | Michelle | Dickson | Ut Limited | Duis.dignissim.tempor@cursuset.org | 1-202-490-0151 | 1-129-553-7398 | 6752 Eros. St. | Stornaway | 61290 | | 21 | Lance | Harper | Rutrum Lorem Limited | Sed.neque@risus.com | 1-685-778-6726 | 1-494-188-6168 | 663-7682 Et St. | Gisborne | 73449 | | 22 | Keely | Pace | Eleifend Limited | ante.bibendum.ullamcorper@necenim.edu | 1-312-381-5244 | 1-432-225-9226 | P.O. Box 506, 5233 Aliquam Av. | Woodlands County | 61213 | | 23 | Sage | Leblanc | Egestas A Consulting | dapibus@elementum.org | 1-630-981-0327 | 1-301-287-0495 | 4463 Lorem Road | Woodlands County | 33951 | | 24 | Marny | Holt | Urna Nec Luctus Associates | ornare@vitaeorci.ca | 1-522-364-3947 | 1-460-971-8360 | P.O. Box 311, 4839 Nulla Av. | Port Coquitlam | 36733 | | 25 | Holly | Park | Mauris PC | Vestibulum.ante@Maecenasliberoest.org | 1-370-197-9316 | 1-411-413-4602 | P.O. Box 732, 8967 Eu Avenue | Provost | 45507 | | 1 | Imani | Davidson | At Ltd | nec@sem.net | 1-243-889-8106 | 1-730-771-0412 | 369-6531 Molestie St. | Russell | 74398 | | 2 | Kelsie | Abbott | Neque Sed Institute | lacus@pede.net | 1-467-506-9933 | 1-441-508-7753 | P.O. Box 548, 1930 Pede. Road | Campbellton | 27022 | | 3 | Hilel | Durham | Pede Incorporated | eu@Craspellentesque.net | 1-752-108-4210 | 1-391-449-8733 | Ap #180-2360 Nisl. Street | Etalle | 84025 | | 4 | Graiden | Molina | Sapien Institute | sit@fermentum.net | 1-130-156-6666 | 1-269-605-7776 | 8890 A, Rd. | Dundee | 70504 | | 5 | Karyn | Howard | Pede Ac Industries | sed.hendrerit@ornaretortorat.edu | 1-109-166-5492 | 1-506-782-5089 | P.O. Box 902, 5398 Et, St. | Saint-Hilarion | 26232 | | 11 | Ishmael | Burnett | Dolor Elit Pellentesque Ltd | vitae.erat@necmollisvitae.ca | 1-872-600-7301 | 1-513-592-6779 | P.O. Box 975, 553 Odio, Road | Hulste | 63345 | | 12 | Ian | Fields | Nulla Magna Malesuada PC | rutrum.non@condimentumDonec.co.uk | 1-138-621-8354 | 1-369-126-7068 | P.O. Box 994, 7053 Quisque Ave | Ostra Vetere | 90433 | | 13 | Xanthus | Acosta | Tortor Company | Nunc.lectus@a.org | 1-834-909-8838 | 1-693-411-2633 | 282-7994 Nunc Av. | Belcarra | 28890 | | 14 | Sophia | Christian | Turpis Ltd | lectus.pede@non.ca | 1-962-503-3253 | 1-157-850-3602 | P.O. Box 824, 7971 Sagittis Rd. | Chattanooga | 56188 | | 15 | Dorothy | Watson | A Sollicitudin Orci Company | diam.dictum@fermentum.co.uk | 1-158-596-8622 | 1-402-884-3438 | 3348 Nec Street | Qu�bec City | 63320 | +----+-----------+------------+----------------------------------+----------------------------------------+----------------+----------------+---------------------------------+------------------+------------+
JSON¶
SELECT * FROM myjsontable;
The query returns the following results:
+-----------------------------------------------------------------+ | JSON_DATA | |-----------------------------------------------------------------| | { | | "customer": { | | "_id": "5730864df388f1d653e37e6f", | | "address": "509 Kings Hwy, Comptche, Missouri, 4848", | | "company": "ORBIN", | | "email": "blankenship.patrick@orbin.ca", | | "name": { | | "first": "Blankenship", | | "last": "Patrick" | | }, | | "phone": "+1 (999) 407-2274" | | } | | } | | { | | "customer": { | | "_id": "5730864d4d8523c8baa8baf6", | | "address": "290 Lefferts Avenue, Malott, Delaware, 1575", | | "company": "SNIPS", | | "email": "anna.glass@snips.name", | | "name": { | | "first": "Anna", | | "last": "Glass" | | }, | | "phone": "+1 (958) 411-2876" | | } | | } | | { | | "customer": { | | "_id": "5730864e375e08523150fc04", | | "address": "756 Randolph Street, Omar, Rhode Island, 3310", | | "company": "ESCHOIR", | | "email": "sparks.ramos@eschoir.co.uk", | | "name": { | | "first": "Sparks", | | "last": "Ramos" | | }, | | "phone": "+1 (962) 436-2519" | | } | | } | +-----------------------------------------------------------------+
Remove the successfully copied data files¶
After you verify that you successfully copied data from your stage into the tables, you can remove data files from the internal stage using the REMOVE command to save on data storage.
REMOVE @my_csv_stage PATTERN='.*.csv.gz';
Snowflake returns the following results:
+-------------------------------+---------+ | name | result | |-------------------------------+---------| | my_csv_stage/contacts1.csv.gz | removed | | my_csv_stage/contacts4.csv.gz | removed | | my_csv_stage/contacts2.csv.gz | removed | | my_csv_stage/contacts3.csv.gz | removed | | my_csv_stage/contacts5.csv.gz | removed | +-------------------------------+---------+REMOVE @my_json_stage PATTERN='.*.json.gz';
Snowflake returns the following results:
+--------------------------------+---------+ | name | result | |--------------------------------+---------| | my_json_stage/contacts.json.gz | removed | +--------------------------------+---------+
Clean up¶
Congratulations, you have successfully completed the tutorial.
Tutorial clean up (optional)¶
Execute the following DROP <object> commands to return your system to its state before you began the tutorial:
DROP DATABASE IF EXISTS mydatabase; DROP WAREHOUSE IF EXISTS mywarehouse;
Dropping the database automatically removes all child database objects such as tables.