snowflake.ml.modeling.linear_model.LassoLarsIC¶
- class snowflake.ml.modeling.linear_model.LassoLarsIC(*, criterion='aic', fit_intercept=True, verbose=False, normalize='deprecated', precompute='auto', max_iter=500, eps=2.220446049250313e-16, copy_X=True, positive=False, noise_variance=None, input_cols: Optional[Union[str, Iterable[str]]] = None, output_cols: Optional[Union[str, Iterable[str]]] = None, label_cols: Optional[Union[str, Iterable[str]]] = None, passthrough_cols: Optional[Union[str, Iterable[str]]] = None, drop_input_cols: Optional[bool] = False, sample_weight_col: Optional[str] = None)¶
Bases:
BaseTransformer
Lasso model fit with Lars using BIC or AIC for model selection For more details on this class, see sklearn.linear_model.LassoLarsIC
- input_cols: Optional[Union[str, List[str]]]
A string or list of strings representing column names that contain features. If this parameter is not specified, all columns in the input DataFrame except the columns specified by label_cols, sample_weight_col, and passthrough_cols parameters are considered input columns. Input columns can also be set after initialization with the set_input_cols method.
- label_cols: Optional[Union[str, List[str]]]
A string or list of strings representing column names that contain labels. Label columns must be specified with this parameter during initialization or with the set_label_cols method before fitting.
- output_cols: Optional[Union[str, List[str]]]
A string or list of strings representing column names that will store the output of predict and transform operations. The length of output_cols must match the expected number of output columns from the specific predictor or transformer class used. If you omit this parameter, output column names are derived by adding an OUTPUT_ prefix to the label column names for supervised estimators, or OUTPUT_<IDX>for unsupervised estimators. These inferred output column names work for predictors, but output_cols must be set explicitly for transformers. In general, explicitly specifying output column names is clearer, especially if you don’t specify the input column names. To transform in place, pass the same names for input_cols and output_cols. be set explicitly for transformers. Output columns can also be set after initialization with the set_output_cols method.
- sample_weight_col: Optional[str]
A string representing the column name containing the sample weights. This argument is only required when working with weighted datasets. Sample weight column can also be set after initialization with the set_sample_weight_col method.
- passthrough_cols: Optional[Union[str, List[str]]]
A string or a list of strings indicating column names to be excluded from any operations (such as train, transform, or inference). These specified column(s) will remain untouched throughout the process. This option is helpful in scenarios requiring automatic input_cols inference, but need to avoid using specific columns, like index columns, during training or inference. Passthrough columns can also be set after initialization with the set_passthrough_cols method.
- drop_input_cols: Optional[bool], default=False
If set, the response of predict(), transform() methods will not contain input columns.
- criterion: {‘aic’, ‘bic’}, default=’aic’
The type of criterion to use.
- fit_intercept: bool, default=True
Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered).
- verbose: bool or int, default=False
Sets the verbosity amount.
- normalize: bool, default=False
This parameter is ignored when
fit_intercept
is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please useStandardScaler
before callingfit
on an estimator withnormalize=False
.- precompute: bool, ‘auto’ or array-like, default=’auto’
Whether to use a precomputed Gram matrix to speed up calculations. If set to
'auto'
let us decide. The Gram matrix can also be passed as argument.- max_iter: int, default=500
Maximum number of iterations to perform. Can be used for early stopping.
- eps: float, default=np.finfo(float).eps
The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the
tol
parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization.- copy_X: bool, default=True
If True, X will be copied; else, it may be overwritten.
- positive: bool, default=False
Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. Under the positive restriction the model coefficients do not converge to the ordinary-least-squares solution for small values of alpha. Only coefficients up to the smallest alpha value (
alphas_[alphas_ > 0.].min()
when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent Lasso estimator. As a consequence using LassoLarsIC only makes sense for problems where a sparse solution is expected and/or reached.- noise_variance: float, default=None
The estimated noise variance of the data. If None, an unbiased estimate is computed by an OLS model. However, it is only possible in the case where n_samples > n_features + fit_intercept.
Base class for all transformers.
Methods
- fit(dataset: Union[DataFrame, DataFrame]) LassoLarsIC ¶
Fit the model using X, y as training data For more details on this function, see sklearn.linear_model.LassoLarsIC.fit
- Raises:
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
- Args:
- dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
Snowpark or Pandas DataFrame.
- Returns:
self
- fit_transform(dataset: Union[DataFrame, DataFrame]) Union[Any, ndarray[Any, dtype[Any]]] ¶
- Returns:
Transformed dataset.
- get_input_cols() List[str] ¶
Input columns getter.
- Returns:
Input columns.
- get_label_cols() List[str] ¶
Label column getter.
- Returns:
Label column(s).
- get_output_cols() List[str] ¶
Output columns getter.
- Returns:
Output columns.
- get_params(deep: bool = True) Dict[str, Any] ¶
Get parameters for this transformer.
- Args:
- deep: If True, will return the parameters for this transformer and
contained subobjects that are transformers.
- Returns:
Parameter names mapped to their values.
- get_passthrough_cols() List[str] ¶
Passthrough columns getter.
- Returns:
Passthrough column(s).
- get_sample_weight_col() Optional[str] ¶
Sample weight column getter.
- Returns:
Sample weight column.
- get_sklearn_args(default_sklearn_obj: Optional[object] = None, sklearn_initial_keywords: Optional[Union[str, Iterable[str]]] = None, sklearn_unused_keywords: Optional[Union[str, Iterable[str]]] = None, snowml_only_keywords: Optional[Union[str, Iterable[str]]] = None, sklearn_added_keyword_to_version_dict: Optional[Dict[str, str]] = None, sklearn_added_kwarg_value_to_version_dict: Optional[Dict[str, Dict[str, str]]] = None, sklearn_deprecated_keyword_to_version_dict: Optional[Dict[str, str]] = None, sklearn_removed_keyword_to_version_dict: Optional[Dict[str, str]] = None) Dict[str, Any] ¶
Get sklearn keyword arguments.
This method enables modifying object parameters for special cases.
- Args:
- default_sklearn_obj: Sklearn object used to get default parameter values. Necessary when
sklearn_added_keyword_to_version_dict is provided.
sklearn_initial_keywords: Initial keywords in sklearn. sklearn_unused_keywords: Sklearn keywords that are unused in snowml. snowml_only_keywords: snowml only keywords not present in sklearn. sklearn_added_keyword_to_version_dict: Added keywords mapped to the sklearn versions in which they were
added.
- sklearn_added_kwarg_value_to_version_dict: Added keyword argument values mapped to the sklearn versions
in which they were added.
- sklearn_deprecated_keyword_to_version_dict: Deprecated keywords mapped to the sklearn versions in which
they were deprecated.
- sklearn_removed_keyword_to_version_dict: Removed keywords mapped to the sklearn versions in which they
were removed.
- Returns:
Sklearn parameter names mapped to their values.
- predict(dataset: Union[DataFrame, DataFrame]) Union[DataFrame, DataFrame] ¶
Predict using the linear model For more details on this function, see sklearn.linear_model.LassoLarsIC.predict
- Raises:
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
- Args:
- dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
Snowpark or Pandas DataFrame.
- Returns:
Transformed dataset.
- score(dataset: Union[DataFrame, DataFrame]) float ¶
Return the coefficient of determination of the prediction For more details on this function, see sklearn.linear_model.LassoLarsIC.score
- Raises:
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
- Args:
- dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
Snowpark or Pandas DataFrame.
- Returns:
Score.
- set_drop_input_cols(drop_input_cols: Optional[bool] = False) None ¶
- set_input_cols(input_cols: Optional[Union[str, Iterable[str]]]) LassoLarsIC ¶
Input columns setter.
- Args:
input_cols: A single input column or multiple input columns.
- Returns:
self
- set_label_cols(label_cols: Optional[Union[str, Iterable[str]]]) Base ¶
Label column setter.
- Args:
label_cols: A single label column or multiple label columns if multi task learning.
- Returns:
self
- set_output_cols(output_cols: Optional[Union[str, Iterable[str]]]) Base ¶
Output columns setter.
- Args:
output_cols: A single output column or multiple output columns.
- Returns:
self
- set_params(**params: Dict[str, Any]) None ¶
Set the parameters of this transformer.
The method works on simple transformers as well as on nested objects. The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Args:
**params: Transformer parameter names mapped to their values.
- Raises:
SnowflakeMLException: Invalid parameter keys.
- set_passthrough_cols(passthrough_cols: Optional[Union[str, Iterable[str]]]) Base ¶
Passthrough columns setter.
- Args:
- passthrough_cols: Column(s) that should not be used or modified by the estimator/transformer.
Estimator/Transformer just passthrough these columns without any modifications.
- Returns:
self
- set_sample_weight_col(sample_weight_col: Optional[str]) Base ¶
Sample weight column setter.
- Args:
sample_weight_col: A single column that represents sample weight.
- Returns:
self
- to_sklearn() Any ¶
Get sklearn.linear_model.LassoLarsIC object.
Attributes
- model_signatures¶
Returns model signature of current class.
- Raises:
exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
- Returns:
Dict[str, ModelSignature]: each method and its input output signature