You are viewing documentation about an older version (1.0.9). View latest version

snowflake.ml.modeling.lightgbm.LGBMClassifier

class snowflake.ml.modeling.lightgbm.LGBMClassifier(*, boosting_type='gbdt', num_leaves=31, max_depth=- 1, learning_rate=0.1, n_estimators=100, subsample_for_bin=200000, objective=None, class_weight=None, min_split_gain=0.0, min_child_weight=0.001, min_child_samples=20, subsample=1.0, subsample_freq=0, colsample_bytree=1.0, reg_alpha=0.0, reg_lambda=0.0, random_state=None, n_jobs=- 1, silent='warn', importance_type='split', input_cols: Optional[Union[str, Iterable[str]]] = None, output_cols: Optional[Union[str, Iterable[str]]] = None, label_cols: Optional[Union[str, Iterable[str]]] = None, drop_input_cols: Optional[bool] = False, sample_weight_col: Optional[str] = None, **kwargs)

Bases: BaseTransformer

LightGBM classifier For more details on this class, see lightgbm.LGBMClassifier

input_cols: Optional[Union[str, List[str]]]

A string or list of strings representing column names that contain features. If this parameter is not specified, all columns in the input DataFrame except the columns specified by label_cols and sample-weight_col parameters are considered input columns.

label_cols: Optional[Union[str, List[str]]]

A string or list of strings representing column names that contain labels. This is a required param for estimators, as there is no way to infer these columns. If this parameter is not specified, then object is fitted without labels(Like a transformer).

output_cols: Optional[Union[str, List[str]]]

A string or list of strings representing column names that will store the output of predict and transform operations. The length of output_cols mus match the expected number of output columns from the specific estimator or transformer class used. If this parameter is not specified, output column names are derived by adding an OUTPUT_ prefix to the label column names. These inferred output column names work for estimator’s predict() method, but output_cols must be set explicitly for transformers.

sample_weight_col: Optional[str]

A string representing the column name containing the examples’ weights. This argument is only required when working with weighted datasets.

drop_input_cols: Optional[bool], default=False

If set, the response of predict(), transform() methods will not contain input columns.

Methods

fit(dataset)

Build a gradient boosting model from the training set (X, y) For more details on this function, see lightgbm.LGBMClassifier.fit

predict(dataset)

Return the predicted value for each sample For more details on this function, see lightgbm.LGBMClassifier.predict

predict_proba(dataset[, output_cols_prefix])

Return the predicted probability for each class for each sample For more details on this function, see lightgbm.LGBMClassifier.predict_proba

score(dataset)

Return the mean accuracy on the given test data and labels For more details on this function, see lightgbm.LGBMClassifier.score

set_input_cols(input_cols)

Input columns setter.

to_lightgbm()

Get lightgbm.LGBMClassifier object.

Attributes

model_signatures

Returns model signature of current class.