snowflake.ml.modeling.linear_model.RidgeClassifierCV¶
- class snowflake.ml.modeling.linear_model.RidgeClassifierCV(*, alphas=(0.1, 1.0, 10.0), fit_intercept=True, scoring=None, cv=None, class_weight=None, store_cv_values=False, input_cols: Optional[Union[str, Iterable[str]]] = None, output_cols: Optional[Union[str, Iterable[str]]] = None, label_cols: Optional[Union[str, Iterable[str]]] = None, drop_input_cols: Optional[bool] = False, sample_weight_col: Optional[str] = None)¶
Bases:
BaseTransformer
Ridge classifier with built-in cross-validation For more details on this class, see sklearn.linear_model.RidgeClassifierCV
- alphas: array-like of shape (n_alphas,), default=(0.1, 1.0, 10.0)
Array of alpha values to try. Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to
1 / (2C)
in other linear models such asLogisticRegression
orLinearSVC
.- fit_intercept: bool, default=True
Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered).
- scoring: str, callable, default=None
A string (see model evaluation documentation) or a scorer callable object / function with signature
scorer(estimator, X, y)
.- cv: int, cross-validation generator or an iterable, default=None
Determines the cross-validation splitting strategy. Possible inputs for cv are:
None, to use the efficient Leave-One-Out cross-validation
integer, to specify the number of folds.
CV splitter,
An iterable yielding (train, test) splits as arrays of indices.
Refer User Guide for the various cross-validation strategies that can be used here.
- class_weight: dict or ‘balanced’, default=None
Weights associated with classes in the form
{class_label: weight}
. If not given, all classes are supposed to have weight one.The “balanced” mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as
n_samples / (n_classes * np.bincount(y))
.- store_cv_values: bool, default=False
Flag indicating if the cross-validation values corresponding to each alpha should be stored in the
cv_values_
attribute (see below). This flag is only compatible withcv=None
(i.e. using Leave-One-Out Cross-Validation).- input_cols: Optional[Union[str, List[str]]]
A string or list of strings representing column names that contain features. If this parameter is not specified, all columns in the input DataFrame except the columns specified by label_cols and sample-weight_col parameters are considered input columns.
- label_cols: Optional[Union[str, List[str]]]
A string or list of strings representing column names that contain labels. This is a required param for estimators, as there is no way to infer these columns. If this parameter is not specified, then object is fitted without labels(Like a transformer).
- output_cols: Optional[Union[str, List[str]]]
A string or list of strings representing column names that will store the output of predict and transform operations. The length of output_cols mus match the expected number of output columns from the specific estimator or transformer class used. If this parameter is not specified, output column names are derived by adding an OUTPUT_ prefix to the label column names. These inferred output column names work for estimator’s predict() method, but output_cols must be set explicitly for transformers.
- sample_weight_col: Optional[str]
A string representing the column name containing the examples’ weights. This argument is only required when working with weighted datasets.
- drop_input_cols: Optional[bool], default=False
If set, the response of predict(), transform() methods will not contain input columns.
Methods
decision_function
(dataset[, output_cols_prefix])Predict confidence scores for samples For more details on this function, see sklearn.linear_model.RidgeClassifierCV.decision_function
fit
(dataset)Fit Ridge classifier with cv For more details on this function, see sklearn.linear_model.RidgeClassifierCV.fit
predict
(dataset)Predict class labels for samples in X For more details on this function, see sklearn.linear_model.RidgeClassifierCV.predict
score
(dataset)Return the mean accuracy on the given test data and labels For more details on this function, see sklearn.linear_model.RidgeClassifierCV.score
set_input_cols
(input_cols)Input columns setter.
to_sklearn
()Get sklearn.linear_model.RidgeClassifierCV object.
Attributes
model_signatures
Returns model signature of current class.