snowflake.ml.modeling.linear_model.SGDClassifier¶
- class snowflake.ml.modeling.linear_model.SGDClassifier(*, loss='hinge', penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=1000, tol=0.001, shuffle=True, verbose=0, epsilon=0.1, n_jobs=None, random_state=None, learning_rate='optimal', eta0=0.0, power_t=0.5, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, class_weight=None, warm_start=False, average=False, input_cols: Optional[Union[str, Iterable[str]]] = None, output_cols: Optional[Union[str, Iterable[str]]] = None, label_cols: Optional[Union[str, Iterable[str]]] = None, drop_input_cols: Optional[bool] = False, sample_weight_col: Optional[str] = None)¶
Bases:
BaseTransformer
Linear classifiers (SVM, logistic regression, etc For more details on this class, see sklearn.linear_model.SGDClassifier
- loss: {‘hinge’, ‘log_loss’, ‘modified_huber’, ‘squared_hinge’, ‘perceptron’, ‘squared_error’, ‘huber’, ‘epsilon_insensitive’, ‘squared_epsilon_insensitive’}, default=’hinge’
The loss function to be used.
‘hinge’ gives a linear SVM.
‘log_loss’ gives logistic regression, a probabilistic classifier.
‘modified_huber’ is another smooth loss that brings tolerance to outliers as well as probability estimates.
‘squared_hinge’ is like hinge but is quadratically penalized.
‘perceptron’ is the linear loss used by the perceptron algorithm.
The other losses, ‘squared_error’, ‘huber’, ‘epsilon_insensitive’ and ‘squared_epsilon_insensitive’ are designed for regression but can be useful in classification as well; see
SGDRegressor
for a description.
More details about the losses formulas can be found in the User Guide.
- penalty: {‘l2’, ‘l1’, ‘elasticnet’, None}, default=’l2’
The penalty (aka regularization term) to be used. Defaults to ‘l2’ which is the standard regularizer for linear SVM models. ‘l1’ and ‘elasticnet’ might bring sparsity to the model (feature selection) not achievable with ‘l2’. No penalty is added when set to None.
- alpha: float, default=0.0001
Constant that multiplies the regularization term. The higher the value, the stronger the regularization. Also used to compute the learning rate when learning_rate is set to ‘optimal’. Values must be in the range [0.0, inf).
- l1_ratio: float, default=0.15
The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Only used if penalty is ‘elasticnet’. Values must be in the range [0.0, 1.0].
- fit_intercept: bool, default=True
Whether the intercept should be estimated or not. If False, the data is assumed to be already centered.
- max_iter: int, default=1000
The maximum number of passes over the training data (aka epochs). It only impacts the behavior in the
fit
method, and not thepartial_fit()
method. Values must be in the range [1, inf).- tol: float or None, default=1e-3
The stopping criterion. If it is not None, training will stop when (loss > best_loss - tol) for
n_iter_no_change
consecutive epochs. Convergence is checked against the training loss or the validation loss depending on the early_stopping parameter. Values must be in the range [0.0, inf).- shuffle: bool, default=True
Whether or not the training data should be shuffled after each epoch.
- verbose: int, default=0
The verbosity level. Values must be in the range [0, inf).
- epsilon: float, default=0.1
Epsilon in the epsilon-insensitive loss functions; only if loss is ‘huber’, ‘epsilon_insensitive’, or ‘squared_epsilon_insensitive’. For ‘huber’, determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. Values must be in the range [0.0, inf).
- n_jobs: int, default=None
The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.- random_state: int, RandomState instance, default=None
Used for shuffling the data, when
shuffle
is set toTrue
. Pass an int for reproducible output across multiple function calls. See Glossary. Integer values must be in the range [0, 2**32 - 1].- learning_rate: str, default=’optimal’
The learning rate schedule:
‘constant’: eta = eta0
‘optimal’: eta = 1.0 / (alpha * (t + t0)) where t0 is chosen by a heuristic proposed by Leon Bottou.
‘invscaling’: eta = eta0 / pow(t, power_t)
‘adaptive’: eta = eta0, as long as the training keeps decreasing. Each time n_iter_no_change consecutive epochs fail to decrease the training loss by tol or fail to increase validation score by tol if early_stopping is True, the current learning rate is divided by 5.
- eta0: float, default=0.0
The initial learning rate for the ‘constant’, ‘invscaling’ or ‘adaptive’ schedules. The default value is 0.0 as eta0 is not used by the default schedule ‘optimal’. Values must be in the range (0.0, inf).
- power_t: float, default=0.5
The exponent for inverse scaling learning rate [default 0.5]. Values must be in the range (-inf, inf).
- early_stopping: bool, default=False
Whether to use early stopping to terminate training when validation score is not improving. If set to True, it will automatically set aside a stratified fraction of training data as validation and terminate training when validation score returned by the score method is not improving by at least tol for n_iter_no_change consecutive epochs.
- validation_fraction: float, default=0.1
The proportion of training data to set aside as validation set for early stopping. Must be between 0 and 1. Only used if early_stopping is True. Values must be in the range (0.0, 1.0).
- n_iter_no_change: int, default=5
Number of iterations with no improvement to wait before stopping fitting. Convergence is checked against the training loss or the validation loss depending on the early_stopping parameter. Integer values must be in the range [1, max_iter).
- class_weight: dict, {class_label: weight} or “balanced”, default=None
Preset for the class_weight fit parameter.
Weights associated with classes. If not given, all classes are supposed to have weight one.
The “balanced” mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as
n_samples / (n_classes * np.bincount(y))
.- warm_start: bool, default=False
When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. See the Glossary.
Repeatedly calling fit or partial_fit when warm_start is True can result in a different solution than when calling fit a single time because of the way the data is shuffled. If a dynamic learning rate is used, the learning rate is adapted depending on the number of samples already seen. Calling
fit
resets this counter, whilepartial_fit
will result in increasing the existing counter.- average: bool or int, default=False
When set to True, computes the averaged SGD weights across all updates and stores the result in the
coef_
attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. Soaverage=10
will begin averaging after seeing 10 samples. Integer values must be in the range [1, n_samples].- input_cols: Optional[Union[str, List[str]]]
A string or list of strings representing column names that contain features. If this parameter is not specified, all columns in the input DataFrame except the columns specified by label_cols and sample-weight_col parameters are considered input columns.
- label_cols: Optional[Union[str, List[str]]]
A string or list of strings representing column names that contain labels. This is a required param for estimators, as there is no way to infer these columns. If this parameter is not specified, then object is fitted without labels(Like a transformer).
- output_cols: Optional[Union[str, List[str]]]
A string or list of strings representing column names that will store the output of predict and transform operations. The length of output_cols mus match the expected number of output columns from the specific estimator or transformer class used. If this parameter is not specified, output column names are derived by adding an OUTPUT_ prefix to the label column names. These inferred output column names work for estimator’s predict() method, but output_cols must be set explicitly for transformers.
- sample_weight_col: Optional[str]
A string representing the column name containing the examples’ weights. This argument is only required when working with weighted datasets.
- drop_input_cols: Optional[bool], default=False
If set, the response of predict(), transform() methods will not contain input columns.
Methods
decision_function
(dataset[, output_cols_prefix])Predict confidence scores for samples For more details on this function, see sklearn.linear_model.SGDClassifier.decision_function
fit
(dataset)Fit linear model with Stochastic Gradient Descent For more details on this function, see sklearn.linear_model.SGDClassifier.fit
predict
(dataset)Predict class labels for samples in X For more details on this function, see sklearn.linear_model.SGDClassifier.predict
predict_log_proba
(dataset[, output_cols_prefix])Probability estimates For more details on this function, see sklearn.linear_model.SGDClassifier.predict_proba
predict_proba
(dataset[, output_cols_prefix])Probability estimates For more details on this function, see sklearn.linear_model.SGDClassifier.predict_proba
score
(dataset)Return the mean accuracy on the given test data and labels For more details on this function, see sklearn.linear_model.SGDClassifier.score
set_input_cols
(input_cols)Input columns setter.
to_sklearn
()Get sklearn.linear_model.SGDClassifier object.
Attributes
model_signatures
Returns model signature of current class.