snowflake.ml.modeling.preprocessing.LabelEncoder¶
- class snowflake.ml.modeling.preprocessing.LabelEncoder(input_cols: Optional[Union[str, Iterable[str]]] = None, output_cols: Optional[Union[str, Iterable[str]]] = None, drop_input_cols: Optional[bool] = False)¶
Bases:
BaseTransformerEncodes target labels with values between 0 and n_classes-1.
In other words, each class (i.e., distinct numeric or string) is assigned an integer value, starting with zero. LabelEncoder is a specialization of OrdinalEncoder for 1-dimensional data.
For more details on what this transformer does, see sklearn.preprocessing.LabelEncoder.
- Args:
input_cols: The name of a column in a DataFrame to be encoded. May be a string or a list containing one string. output_cols: The name of a column in a DataFrame where the results will be stored. May be a string or a list
containing one string.
drop_input_cols: Remove input columns from output if set True. False by default.
Methods
fit(dataset)Fit label encoder with label column in dataset.
transform(dataset)Use fit result to transform snowpark dataframe or pandas dataframe.