modin.pandas.Series.dropna¶
- Series.dropna(*, axis=0, inplace=False, how=None, ignore_index=False) Optional[Series][source]¶
- Return a new Series with missing values removed. - Parameters:
- axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DataFrame. 
- inplace (bool, default False) – If True, do operation inplace and return None. 
- how (str, optional) – Not in use. Kept for compatibility. 
 
- Returns:
- Series with NA entries dropped from it or None if - inplace=True.
- Return type:
- Snowpark pandas - Seriesor None
 - See also - Series.isna
- Indicate missing values. 
- Series.notna
- Indicate existing (non-missing) values. 
- Series.fillna
- Replace missing values. 
- DataFrame.dropna
- Drop rows or columns which contain NA values. 
- Index.dropna
- Drop missing indices. 
 - Examples - >>> ser = pd.Series([1., 2., np.nan]) >>> ser 0 1.0 1 2.0 2 NaN dtype: float64 - Drop NA values from a Series. - >>> ser.dropna() 0 1.0 1 2.0 dtype: float64 - Keep the Series with valid entries in the same variable. - >>> ser.dropna(inplace=True) >>> ser 0 1.0 1 2.0 dtype: float64 - Empty strings are not considered NA values. - Noneis considered an NA value.- >>> ser = pd.Series([np.nan, 2, pd.NaT, '', None, 'I stay']) >>> ser 0 None 1 2 2 None 3 4 None 5 I stay dtype: object >>> ser.dropna() 1 2 3 5 I stay dtype: object