Tutorial 2: Interfaces do consumidor com um CKE em um chatbot Streamlit

Introdução

Neste tutorial, você configurará um pipeline personalizado de geração aumentada de recuperação (RAG) para integrar o conhecimento de uma Cortex Knowledge Extension em um chatbot.

É assim que funciona:

  1. Um aplicativo Streamlit aceita um prompt de um usuário.

  2. O prompt é fornecido à Cortex Search Query API com a Cortex Knowledge Extension/o Cortex Search Service configurado.

  3. O aplicativo Streamlit pega os documentos recuperados, coloca-os na janela de contexto com um prompt personalizado e os envia para a função Complete do Cortex LLM com um LLM especificado.

Nota

Este tutorial pressupõe que você já tenha uma CKE disponível. Vá para Snowflake Marketplace e acesse uma, ou use Tutorial 1 para criar uma.

Um fluxograma que mostra o fluxo de trabalho da CKE, desde o serviço de pesquisa do Cortex de um provedor até um índice de pesquisa e uma resposta no prompt de um consumidor.

Etapa 1. Configure seu ambiente

O exemplo abaixo configura um ambiente e cria um aplicativo Streamlit que você pode executar no Snowflake para testar uma Cortex Knowledge Extension. Isso pressupõe que o consumidor tenha acesso a uma Cortex Knowledge Extension compartilhada por um provedor.

  1. Faça login no Snowsight.

  2. Na barra de navegação à esquerda, selecione Projects » Streamlit.

  3. Selecione + Streamlit App.

    A janela Create Streamlit App é aberta.

  4. Digite um nome para seu aplicativo.

  5. No menu suspenso App location, selecione o banco de dados e o esquema do seu aplicativo.

  6. No menu suspenso Warehouse, selecione o warehouse onde você deseja executar seu aplicativo e executar consultas.

  7. Selecione Create.

    O editor Streamlit no Snowflake abre um aplicativo Streamlit de exemplo no modo de visualização. O modo visualizador permite que você veja como o aplicativo Streamlit aparece para os usuários.

  8. Verifique se os pacotes e as versões corretas estão instalados, como na imagem abaixo.

Uma captura de tela mostrando os pacotes que precisam ser instalados para usar a CKE.

Etapa 2: crie um aplicativo Streamlit para seu testador de bate-papo CKE

O código abaixo é um aplicativo Streamlit simples que permite que você teste a CKE. O aplicativo usa o pacote Python do Snowflake ML para chamar a Cortex Knowledge Extension e a função completa do Snowflake LLM. O aplicativo permite que você selecione uma Cortex Knowledge Extension, insira uma pergunta e receba uma resposta do LLM. O aplicativo também oferece opções para depuração e uso do histórico de bate-papo.

  1. Na barra de navegação à esquerda, selecione Projects » Streamlit.

  2. Selecione o aplicativo Streamlit que você criou na etapa anterior.

  3. No editor Streamlit no Snowflake, selecione Edit » Edit code.

    O editor Streamlit no Snowflake é aberto no modo de edição.

  4. Na barra de navegação esquerda, selecione streamlit_app.py para abrir o editor de código.

  5. No editor de código, exclua o código existente.

  6. Copie o código abaixo e cole-o no editor de código e, em seguida, selecione Save » Save and run.

    O editor Streamlit no Snowflake executa o aplicativo e o abre no modo de visualização.

import streamlit as st
from snowflake.core import Root
from snowflake.cortex import Complete
from snowflake.snowpark.context import get_active_session

MODELS = [
    "llama3.1-8b",
    "llama3.1-70b",
    "llama3.1-405b"
]

def init_messages():
    """Initialize session state messages if not present or if we need to clear."""
    if st.session_state.get("clear_conversation") or "messages" not in st.session_state:
        st.session_state.messages = []
        st.session_state.clear_conversation = False

def init_service_metadata():
    """Load or refresh cortex search services from Snowflake."""
    services = session.sql("SHOW CORTEX SEARCH SERVICES IN ACCOUNT;").collect()
    service_metadata = []
    if services:
        for s in services:
            svc_name = s["name"]
            svc_schema = s["schema_name"]
            svc_db = s["database_name"]
            svc_search_col = session.sql(
                f"DESC CORTEX SEARCH SERVICE {svc_db}.{svc_schema}.{svc_name};"
            ).collect()[0]["search_column"]
            service_metadata.append(
                {
                    "name": svc_name,
                    "search_column": svc_search_col,
                    "db": svc_db,
                    "schema": svc_schema,
                }
            )

    st.session_state.service_metadata = service_metadata

    # Initialize selected_cortex_search_service if it doesn't exist
    if "selected_cortex_search_service" not in st.session_state and service_metadata:
        st.session_state.selected_cortex_search_service = service_metadata[0]["name"]

    selected_entry = st.session_state.get("selected_cortex_search_service")

    if selected_entry:
        # Find matching service metadata
        selected_service_metadata = next(
            (svc for svc in st.session_state.service_metadata if svc["name"] == selected_entry),
            None
        )

        if selected_service_metadata:
            # Store them in session_state
            st.session_state.selected_schema = selected_service_metadata["schema"]
            st.session_state.selected_db = selected_service_metadata["db"]
        elif st.session_state.get("debug", False):
            st.write("No matching service found for:", selected_entry)

def init_config_options():
    if "service_metadata" not in st.session_state or not st.session_state.service_metadata:
        st.sidebar.warning("No Cortex Knowledge Extensions available")
        return

    st.sidebar.selectbox(
        "Select Cortex Knowledge Extension",
        [s["name"] for s in st.session_state.service_metadata],
        key="selected_cortex_search_service",
    )
    if st.sidebar.button("Clear conversation"):
        st.session_state.clear_conversation = True

    # If st.sidebar.toggle isn't available, use st.sidebar.checkbox:
    st.sidebar.checkbox("Debug", key="debug", value=False)
    st.sidebar.checkbox("Use chat history", key="use_chat_history", value=True)

    with st.sidebar.expander("Advanced options"):
        st.selectbox("Select model:", MODELS, key="model_name")
        st.number_input(
            "Select number of context chunks",
            value=5,
            key="num_retrieved_chunks",
            min_value=1,
            max_value=10,
        )
        st.number_input(
            "Select number of messages to use in chat history",
            value=5,
            key="num_chat_messages",
            min_value=1,
            max_value=10,
        )

    st.sidebar.expander("Session State").write(st.session_state)

def get_chat_history():
    """Get the last N messages from session state."""
    start_index = max(
        0, len(st.session_state.messages) - st.session_state.num_chat_messages
    )
    return st.session_state.messages[start_index : len(st.session_state.messages) - 1]

def complete(model, prompt):
    """Use the chosen Snowflake cortex model to complete a prompt."""
    return Complete(model=model, prompt=prompt).replace("$", "\\$")

def make_chat_history_summary(chat_history, question):
    """
    Summarize the chat history plus the question using your LLM,
    to refine the final search query.
    """
    prompt = f"""
    [INST]
    Based on the chat history below and the question, generate a query that extend the question
    with the chat history provided. The query should be in natural language.
    Answer with only the query. Do not add any explanation.

    <chat_history>
    {chat_history}
    </chat_history>
    <question>
    {question}
    </question>
    [/INST]
    """
    summary = complete(st.session_state.model_name, prompt)
    if st.session_state.debug:
        st.sidebar.text_area("Chat history summary", summary.replace("$", "\\$"), height=150)
    return summary

def query_cortex_search_service(query, columns=[], filter={}):
    """
    Query the selected cortex search service with the given query and retrieve context documents.
    """
    # Safely retrieve from session_state
    db = st.session_state.get("selected_db")
    schema = st.session_state.get("selected_schema")

    if st.session_state.get("debug", False):
        st.sidebar.write("Query:", query)
        st.sidebar.write("DB:", db)
        st.sidebar.write("Schema:", schema)
        st.sidebar.write("Service:", st.session_state.selected_cortex_search_service)

    cortex_search_service = (
        root.databases[db]
        .schemas[schema]
        .cortex_search_services[st.session_state.selected_cortex_search_service]
    )

    context_documents = cortex_search_service.search(
        query,
        columns=columns,
        filter=filter,
        limit=st.session_state.num_retrieved_chunks
    )

    results = context_documents.results

    if st.session_state.get("debug", False):
        st.sidebar.write("Search Results:", results)

    service_metadata = st.session_state.service_metadata
    search_col = [
        s["search_column"] for s in service_metadata
        if s["name"] == st.session_state.selected_cortex_search_service
    ][0].lower()

    # Build a context string for the prompt
    context_str = ""
    context_str_template = (
        "Source: {source_url}\n"
        "Source ID: {id}\n"
        "Excerpt: {chunk}\n\n\n"
    )
    for i, r in enumerate(results):
        context_str += context_str_template.format(
            id=i+1,
            chunk=r[search_col],
            source_url=r["source_url"],
            title=r["document_title"],
        )
    if st.session_state.debug:
        st.sidebar.text_area("Context documents", context_str, height=500)

    return context_str, results

def create_prompt(user_question):
    """
    Combine user question, context from the search service, and chat history
    to create a final prompt for the LLM.
    """
    if st.session_state.use_chat_history:
        chat_history = get_chat_history()
        if chat_history != []:
            question_summary = make_chat_history_summary(chat_history, user_question)
            prompt_context, results = query_cortex_search_service(
                question_summary, columns=["chunk", "source_url", "document_title"]
            )
        else:
            prompt_context, results = query_cortex_search_service(
                user_question, columns=["chunk", "source_url", "document_title"]
            )
    else:
        prompt_context, results = query_cortex_search_service(
            user_question, columns=["chunk", "source_url", "document_title"]
        )
        chat_history = ""

    prompt = f"""
You are a helpful AI assistant with RAG capabilities. When a user asks you a question, you will also be given excerpts from relevant documentation to help answer the question accurately. Please use the context provided and cite your sources using the citation format provided.

Context from documentation:
{prompt_context}

User question:
{user_question}

OUTPUT:
"""

    # Add prompt to debug window
    if st.session_state.get("debug", False):
        st.sidebar.text_area("Complete Prompt", prompt, height=300)

    return prompt, results

def post_process_citations(generated_response, results):
    """
    Replace {{.StartCitation}}X{{.EndCitation}} with bracketed references to actual product links.

    NOTE: If the model references chunks out of range (like 4 if only 2 exist),
    consider adding logic to remap or drop invalid references.
    """
    used_results = set()
    for i, ref in enumerate(results):
        old_str = f"{{.StartCitation}}{i+1}{{.EndCitation}}"
        replacement = f"[{i+1}]{ref['source_url']})"
        new_resp = generated_response.replace(old_str, replacement)
        if new_resp != generated_response:
            used_results.add(i)
        generated_response = new_resp
    return generated_response, used_results

# ------------------------------------------------------------------------------
# (2) Main Application (with improved UI)
# ------------------------------------------------------------------------------

def main():
    # Optional: wide layout, custom page title
    st.set_page_config(
        page_title="Cortex Knowledge Extension Chat Tester",
        layout="wide",
    )

    # Optional: a bit of custom CSS for bubble spacing
    custom_css = """
    <style>
    [data-testid="stChatMessage"] {
        border-radius: 8px;
        margin-bottom: 1rem;
        padding: 10px;
    }
    </style>
    """
    st.markdown(custom_css, unsafe_allow_html=True)

    # Title or subheader for your app
    st.subheader("Cortex Knowledge Extension Chat Tester")

    # Initialize metadata and config
    init_service_metadata()
    init_config_options()
    init_messages()

    # Icons for user/assistant
    icons = {"assistant": "❄️", "user": "👤"}

    # Display chat messages from history on app rerun
    for message in st.session_state.messages:
        with st.chat_message(message["role"], avatar=icons[message["role"]]):
            st.markdown(message["content"])

    # If there are no services, disable chat
    disable_chat = (
        "service_metadata" not in st.session_state
        or len(st.session_state.service_metadata) == 0
    )

    # Chat input
    if question := st.chat_input("Ask a question...", disabled=disable_chat):
        # 1. Store user message
        st.session_state.messages.append({"role": "user", "content": question})

        # 2. Display user bubble
        with st.chat_message("user", avatar=icons["user"]):
            st.markdown(question.replace("$", "\\$"))

        # 3. Prepare assistant response
        with st.chat_message("assistant", avatar=icons["assistant"]):
            message_placeholder = st.empty()

            # Clean the question
            question_safe = question.replace("'", "")

            # Build prompt and retrieve docs
            prompt, results = create_prompt(question_safe)

            with st.spinner("Thinking..."):
                generated_response = complete(st.session_state.model_name, prompt)

                # Post-process citations
                post_processed_response, used_results = post_process_citations(generated_response, results)

                # Build references table (only if there are results)
                if results:
                    markdown_table = "\n\n###### References \n\n| Index | Title | Source |\n|------|-------|--------|\n"
                    for i, ref in enumerate(results):
                        # Include all references that were found
                        markdown_table += (
                            f"| {i+1} | {ref.get('document_title', 'N/A')} | "
                            f"{ref.get('source_url', 'N/A')} |\n"
                        )
                else:
                    markdown_table = "\n\n*No references found*"

                # Show final assistant message (with references)
                message_placeholder.markdown(post_processed_response + markdown_table)

        # 4. Append final assistant message to chat history
        st.session_state.messages.append(
            {"role": "assistant", "content": post_processed_response + markdown_table}
        )

# ------------------------------------------------------------------------------
# (3) Entry Point
# ------------------------------------------------------------------------------
if __name__ == "__main__":
    session = get_active_session()
    root = Root(session)
    main()
Copy

Etapa 3: teste o aplicativo

  1. Clique em Run para iniciar o aplicativo Streamlit.

  2. Selecione uma CKE no menu suspenso no painel esquerdo em Select Cortex Knowledge Extension.`

  3. Faça uma pergunta na caixa de texto do bate-papo.

Uma captura de tela mostrando a caixa de texto do bate-papo “Faça uma pergunta”.