modin.pandas.Series.sort_values¶
- Series.sort_values(*, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last', ignore_index: bool = False, key: Optional[IndexKeyFunc] = None) Union[Series, None][source]¶
Sort by the values.
Sort a Series in ascending or descending order by some criterion.
- Parameters:
axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DataFrame.
ascending (bool or list of bools, default True) – If True, sort values in ascending order, otherwise descending.
inplace (bool, default False) – If True, perform operation in-place.
kind ({'quicksort', 'mergesort', 'heapsort', 'stable'} default 'None') – Choice of sorting algorithm. By default, Snowpark Pandaas performs unstable sort. Please use ‘stable’ to perform stable sort. Other choices ‘quicksort’, ‘mergesort’ and ‘heapsort’ are ignored.
na_position ({'first' or 'last'}, default 'last') – Argument ‘first’ puts NaNs at the beginning, ‘last’ puts NaNs at the end.
ignore_index (bool, default False) – If True, the resulting axis will be labeled 0, 1, …, n - 1.
key (callable, optional) – If not None, apply the key function to the series values before sorting. This is similar to the key argument in the builtin
sorted()function, with the notable difference that this key function should be vectorized. It should expect aSeriesand return an array-like.
- Returns:
Series ordered by values or None if
inplace=True.- Return type:
Series or None
Notes
Snowpark pandas API doesn’t currently support distributed computation of sort_values when ‘key’ argument is provided.
See also
Series.sort_indexSort by the Series indices.
DataFrame.sort_valuesSort DataFrame by the values along either axis.
DataFrame.sort_indexSort DataFrame by indices.
Examples
>>> s = pd.Series([np.nan, 1, 3, 10, 5]) >>> s 0 NaN 1 1.0 2 3.0 3 10.0 4 5.0 dtype: float64
Sort values ascending order (default behaviour)
>>> s.sort_values(ascending=True) 1 1.0 2 3.0 4 5.0 3 10.0 0 NaN dtype: float64
Sort values descending order
>>> s.sort_values(ascending=False) 3 10.0 4 5.0 2 3.0 1 1.0 0 NaN dtype: float64
Sort values inplace
>>> s.sort_values(ascending=False, inplace=True) >>> s 3 10.0 4 5.0 2 3.0 1 1.0 0 NaN dtype: float64
Sort values putting NAs first
>>> s.sort_values(na_position='first') 0 NaN 1 1.0 2 3.0 4 5.0 3 10.0 dtype: float64
Sort a series of strings
>>> s = pd.Series(['z', 'b', 'd', 'a', 'c']) >>> s 0 z 1 b 2 d 3 a 4 c dtype: object
>>> s.sort_values() 3 a 1 b 4 c 2 d 0 z dtype: object
Sort using a key function. Your key function will be given the
Seriesof values and should return an array-like.>>> s = pd.Series(['a', 'B', 'c', 'D', 'e']) >>> s.sort_values() 1 B 3 D 0 a 2 c 4 e dtype: object