modin.pandas.Series.shift¶
- Series.shift(periods: int | Sequence[int] = 1, freq=None, axis: Axis = 0, fill_value: Hashable = _NoDefault.no_default, suffix: str | None = None)[source]¶
Shift data by desired number of periods and replace columns with fill_value (default: None).
Snowpark pandas does not support freq currently.
The axis parameter is unused, and defaults to 0.
- Parameters:
periods (int) – Number of periods to shift. Can be positive or negative.
freq (not supported, default None) –
axis ({0 or 'index', 1 or 'columns', None}, default None) – Shift direction. This parameter is unused and expects 0, ‘index’ or None.
fill_value (object, optional) – The scalar value to use for newly introduced missing values. the default depends on the dtype of self. For numeric data,
np.nan
is used. For datetime, timedelta, or period data, etc.NaT
is used. For extension dtypes,self.dtype.na_value
is used.
- Returns:
Copy of input object, shifted.
- Return type:
Examples
>>> s = pd.Series([10, 20, 15, 30, 45], ... index=pd.date_range("2020-01-01", "2020-01-05")) >>> s 2020-01-01 10 2020-01-02 20 2020-01-03 15 2020-01-04 30 2020-01-05 45 Freq: None, dtype: int64
>>> s.shift(periods=3) 2020-01-01 NaN 2020-01-02 NaN 2020-01-03 NaN 2020-01-04 10.0 2020-01-05 20.0 Freq: None, dtype: float64
>>> s.shift(periods=-2) 2020-01-01 15.0 2020-01-02 30.0 2020-01-03 45.0 2020-01-04 NaN 2020-01-05 NaN Freq: None, dtype: float64
>>> s.shift(periods=3, fill_value=0) 2020-01-01 0 2020-01-02 0 2020-01-03 0 2020-01-04 10 2020-01-05 20 Freq: None, dtype: int64