snowflake.ml.modeling.covariance.EmpiricalCovarianceΒΆ
- class snowflake.ml.modeling.covariance.EmpiricalCovariance(*, store_precision=True, assume_centered=False, input_cols: Optional[Union[str, Iterable[str]]] = None, output_cols: Optional[Union[str, Iterable[str]]] = None, label_cols: Optional[Union[str, Iterable[str]]] = None, drop_input_cols: Optional[bool] = False, sample_weight_col: Optional[str] = None)ΒΆ
Bases:
BaseTransformer
Maximum likelihood covariance estimator For more details on this class, see sklearn.covariance.EmpiricalCovariance
- store_precision: bool, default=True
Specifies if the estimated precision is stored.
- assume_centered: bool, default=False
If True, data are not centered before computation. Useful when working with data whose mean is almost, but not exactly zero. If False (default), data are centered before computation.
- input_cols: Optional[Union[str, List[str]]]
A string or list of strings representing column names that contain features. If this parameter is not specified, all columns in the input DataFrame except the columns specified by label_cols and sample-weight_col parameters are considered input columns.
- label_cols: Optional[Union[str, List[str]]]
A string or list of strings representing column names that contain labels. This is a required param for estimators, as there is no way to infer these columns. If this parameter is not specified, then object is fitted without labels(Like a transformer).
- output_cols: Optional[Union[str, List[str]]]
A string or list of strings representing column names that will store the output of predict and transform operations. The length of output_cols mus match the expected number of output columns from the specific estimator or transformer class used. If this parameter is not specified, output column names are derived by adding an OUTPUT_ prefix to the label column names. These inferred output column names work for estimatorβs predict() method, but output_cols must be set explicitly for transformers.
- sample_weight_col: Optional[str]
A string representing the column name containing the examplesβ weights. This argument is only required when working with weighted datasets.
- drop_input_cols: Optional[bool], default=False
If set, the response of predict(), transform() methods will not contain input columns.
Methods
fit
(dataset)Fit the maximum likelihood covariance estimator to X For more details on this function, see sklearn.covariance.EmpiricalCovariance.fit
score
(dataset)Compute the log-likelihood of X_test under the estimated Gaussian model For more details on this function, see sklearn.covariance.EmpiricalCovariance.score
set_input_cols
(input_cols)Input columns setter.
to_sklearn
()Get sklearn.covariance.EmpiricalCovariance object.
Attributes
model_signatures
Returns model signature of current class.