You are viewing documentation about an older version (1.0.9). View latest version

snowflake.ml.modeling.decomposition.SparsePCAΒΆ

class snowflake.ml.modeling.decomposition.SparsePCA(*, n_components=None, alpha=1, ridge_alpha=0.01, max_iter=1000, tol=1e-08, method='lars', n_jobs=None, U_init=None, V_init=None, verbose=False, random_state=None, input_cols: Optional[Union[str, Iterable[str]]] = None, output_cols: Optional[Union[str, Iterable[str]]] = None, label_cols: Optional[Union[str, Iterable[str]]] = None, drop_input_cols: Optional[bool] = False, sample_weight_col: Optional[str] = None)ΒΆ

Bases: BaseTransformer

Sparse Principal Components Analysis (SparsePCA) For more details on this class, see sklearn.decomposition.SparsePCA

n_components: int, default=None

Number of sparse atoms to extract. If None, then n_components is set to n_features.

alpha: float, default=1

Sparsity controlling parameter. Higher values lead to sparser components.

ridge_alpha: float, default=0.01

Amount of ridge shrinkage to apply in order to improve conditioning when calling the transform method.

max_iter: int, default=1000

Maximum number of iterations to perform.

tol: float, default=1e-8

Tolerance for the stopping condition.

method: {β€˜lars’, β€˜cd’}, default=’lars’

Method to be used for optimization. lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

n_jobs: int, default=None

Number of parallel jobs to run. None means 1 unless in a joblib.parallel_backend context. -1 means using all processors. See Glossary for more details.

U_init: ndarray of shape (n_samples, n_components), default=None

Initial values for the loadings for warm restart scenarios. Only used if U_init and V_init are not None.

V_init: ndarray of shape (n_components, n_features), default=None

Initial values for the components for warm restart scenarios. Only used if U_init and V_init are not None.

verbose: int or bool, default=False

Controls the verbosity; the higher, the more messages. Defaults to 0.

random_state: int, RandomState instance or None, default=None

Used during dictionary learning. Pass an int for reproducible results across multiple function calls. See Glossary.

input_cols: Optional[Union[str, List[str]]]

A string or list of strings representing column names that contain features. If this parameter is not specified, all columns in the input DataFrame except the columns specified by label_cols and sample-weight_col parameters are considered input columns.

label_cols: Optional[Union[str, List[str]]]

A string or list of strings representing column names that contain labels. This is a required param for estimators, as there is no way to infer these columns. If this parameter is not specified, then object is fitted without labels(Like a transformer).

output_cols: Optional[Union[str, List[str]]]

A string or list of strings representing column names that will store the output of predict and transform operations. The length of output_cols mus match the expected number of output columns from the specific estimator or transformer class used. If this parameter is not specified, output column names are derived by adding an OUTPUT_ prefix to the label column names. These inferred output column names work for estimator’s predict() method, but output_cols must be set explicitly for transformers.

sample_weight_col: Optional[str]

A string representing the column name containing the examples’ weights. This argument is only required when working with weighted datasets.

drop_input_cols: Optional[bool], default=False

If set, the response of predict(), transform() methods will not contain input columns.

Methods

fit(dataset)

Fit the model from data in X For more details on this function, see sklearn.decomposition.SparsePCA.fit

score(dataset)

Method not supported for this class.

set_input_cols(input_cols)

Input columns setter.

to_sklearn()

Get sklearn.decomposition.SparsePCA object.

transform(dataset)

Least Squares projection of the data onto the sparse components For more details on this function, see sklearn.decomposition.SparsePCA.transform

Attributes

model_signatures

Returns model signature of current class.