snowflake.ml.modeling.ensemble.VotingRegressor¶
- class snowflake.ml.modeling.ensemble.VotingRegressor(*, estimators, weights=None, n_jobs=None, verbose=False, input_cols: Optional[Union[str, Iterable[str]]] = None, output_cols: Optional[Union[str, Iterable[str]]] = None, label_cols: Optional[Union[str, Iterable[str]]] = None, drop_input_cols: Optional[bool] = False, sample_weight_col: Optional[str] = None)¶
- Bases: - BaseTransformer- Prediction voting regressor for unfitted estimators For more details on this class, see sklearn.ensemble.VotingRegressor - estimators: list of (str, estimator) tuples
- Invoking the - fitmethod on the- VotingRegressorwill fit clones of those original estimators that will be stored in the class attribute- self.estimators_. An estimator can be set to- 'drop'using- set_params().
- weights: array-like of shape (n_regressors,), default=None
- Sequence of weights (float or int) to weight the occurrences of predicted values before averaging. Uses uniform weights if None. 
- n_jobs: int, default=None
- The number of jobs to run in parallel for - fit.- Nonemeans 1 unless in a- joblib.parallel_backendcontext.- -1means using all processors. See Glossary for more details.
- verbose: bool, default=False
- If True, the time elapsed while fitting will be printed as it is completed. 
- input_cols: Optional[Union[str, List[str]]]
- A string or list of strings representing column names that contain features. If this parameter is not specified, all columns in the input DataFrame except the columns specified by label_cols and sample-weight_col parameters are considered input columns. 
- label_cols: Optional[Union[str, List[str]]]
- A string or list of strings representing column names that contain labels. This is a required param for estimators, as there is no way to infer these columns. If this parameter is not specified, then object is fitted without labels(Like a transformer). 
- output_cols: Optional[Union[str, List[str]]]
- A string or list of strings representing column names that will store the output of predict and transform operations. The length of output_cols mus match the expected number of output columns from the specific estimator or transformer class used. If this parameter is not specified, output column names are derived by adding an OUTPUT_ prefix to the label column names. These inferred output column names work for estimator’s predict() method, but output_cols must be set explicitly for transformers. 
- sample_weight_col: Optional[str]
- A string representing the column name containing the examples’ weights. This argument is only required when working with weighted datasets. 
- drop_input_cols: Optional[bool], default=False
- If set, the response of predict(), transform() methods will not contain input columns. 
 - Methods - fit(dataset)- Fit the estimators For more details on this function, see sklearn.ensemble.VotingRegressor.fit - predict(dataset)- Predict regression target for X For more details on this function, see sklearn.ensemble.VotingRegressor.predict - score(dataset)- Return the coefficient of determination of the prediction For more details on this function, see sklearn.ensemble.VotingRegressor.score - set_input_cols(input_cols)- Input columns setter. - to_sklearn()- Get sklearn.ensemble.VotingRegressor object. - transform(dataset)- Return predictions for X for each estimator For more details on this function, see sklearn.ensemble.VotingRegressor.transform - Attributes - model_signatures- Returns model signature of current class.