snowflake.ml.modeling.gaussian_process.GaussianProcessClassifierΒΆ
- class snowflake.ml.modeling.gaussian_process.GaussianProcessClassifier(*, kernel=None, optimizer='fmin_l_bfgs_b', n_restarts_optimizer=0, max_iter_predict=100, warm_start=False, copy_X_train=True, random_state=None, multi_class='one_vs_rest', n_jobs=None, input_cols: Optional[Union[str, Iterable[str]]] = None, output_cols: Optional[Union[str, Iterable[str]]] = None, label_cols: Optional[Union[str, Iterable[str]]] = None, drop_input_cols: Optional[bool] = False, sample_weight_col: Optional[str] = None)ΒΆ
Bases:
BaseTransformer
Gaussian process classification (GPC) based on Laplace approximation For more details on this class, see sklearn.gaussian_process.GaussianProcessClassifier
- kernel: kernel instance, default=None
The kernel specifying the covariance function of the GP. If None is passed, the kernel β1.0 * RBF(1.0)β is used as default. Note that the kernelβs hyperparameters are optimized during fitting. Also kernel cannot be a CompoundKernel.
- optimizer: βfmin_l_bfgs_bβ, callable or None, default=βfmin_l_bfgs_bβ
Can either be one of the internally supported optimizers for optimizing the kernelβs parameters, specified by a string, or an externally defined optimizer passed as a callable. If a callable is passed, it must have the signature:
def optimizer(obj_func, initial_theta, bounds): # * 'obj_func' is the objective function to be maximized, which # takes the hyperparameters theta as parameter and an # optional flag eval_gradient, which determines if the # gradient is returned additionally to the function value # * 'initial_theta': the initial value for theta, which can be # used by local optimizers # * 'bounds': the bounds on the values of theta .... # Returned are the best found hyperparameters theta and # the corresponding value of the target function. return theta_opt, func_min
Per default, the βL-BFGS-Bβ algorithm from scipy.optimize.minimize is used. If None is passed, the kernelβs parameters are kept fixed. Available internal optimizers are:
'fmin_l_bfgs_b'
- n_restarts_optimizer: int, default=0
The number of restarts of the optimizer for finding the kernelβs parameters which maximize the log-marginal likelihood. The first run of the optimizer is performed from the kernelβs initial parameters, the remaining ones (if any) from thetas sampled log-uniform randomly from the space of allowed theta-values. If greater than 0, all bounds must be finite. Note that n_restarts_optimizer=0 implies that one run is performed.
- max_iter_predict: int, default=100
The maximum number of iterations in Newtonβs method for approximating the posterior during predict. Smaller values will reduce computation time at the cost of worse results.
- warm_start: bool, default=False
If warm-starts are enabled, the solution of the last Newton iteration on the Laplace approximation of the posterior mode is used as initialization for the next call of _posterior_mode(). This can speed up convergence when _posterior_mode is called several times on similar problems as in hyperparameter optimization. See the Glossary.
- copy_X_train: bool, default=True
If True, a persistent copy of the training data is stored in the object. Otherwise, just a reference to the training data is stored, which might cause predictions to change if the data is modified externally.
- random_state: int, RandomState instance or None, default=None
Determines random number generation used to initialize the centers. Pass an int for reproducible results across multiple function calls. See Glossary.
- multi_class: {βone_vs_restβ, βone_vs_oneβ}, default=βone_vs_restβ
Specifies how multi-class classification problems are handled. Supported are βone_vs_restβ and βone_vs_oneβ. In βone_vs_restβ, one binary Gaussian process classifier is fitted for each class, which is trained to separate this class from the rest. In βone_vs_oneβ, one binary Gaussian process classifier is fitted for each pair of classes, which is trained to separate these two classes. The predictions of these binary predictors are combined into multi-class predictions. Note that βone_vs_oneβ does not support predicting probability estimates.
- n_jobs: int, default=None
The number of jobs to use for the computation: the specified multiclass problems are computed in parallel.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.- input_cols: Optional[Union[str, List[str]]]
A string or list of strings representing column names that contain features. If this parameter is not specified, all columns in the input DataFrame except the columns specified by label_cols and sample-weight_col parameters are considered input columns.
- label_cols: Optional[Union[str, List[str]]]
A string or list of strings representing column names that contain labels. This is a required param for estimators, as there is no way to infer these columns. If this parameter is not specified, then object is fitted without labels(Like a transformer).
- output_cols: Optional[Union[str, List[str]]]
A string or list of strings representing column names that will store the output of predict and transform operations. The length of output_cols mus match the expected number of output columns from the specific estimator or transformer class used. If this parameter is not specified, output column names are derived by adding an OUTPUT_ prefix to the label column names. These inferred output column names work for estimatorβs predict() method, but output_cols must be set explicitly for transformers.
- sample_weight_col: Optional[str]
A string representing the column name containing the examplesβ weights. This argument is only required when working with weighted datasets.
- drop_input_cols: Optional[bool], default=False
If set, the response of predict(), transform() methods will not contain input columns.
Methods
fit
(dataset)Fit Gaussian process classification model For more details on this function, see sklearn.gaussian_process.GaussianProcessClassifier.fit
predict
(dataset)Perform classification on an array of test vectors X For more details on this function, see sklearn.gaussian_process.GaussianProcessClassifier.predict
predict_proba
(dataset[, output_cols_prefix])Return probability estimates for the test vector X For more details on this function, see sklearn.gaussian_process.GaussianProcessClassifier.predict_proba
score
(dataset)Return the mean accuracy on the given test data and labels For more details on this function, see sklearn.gaussian_process.GaussianProcessClassifier.score
set_input_cols
(input_cols)Input columns setter.
to_sklearn
()Get sklearn.gaussian_process.GaussianProcessClassifier object.
Attributes
model_signatures
Returns model signature of current class.