You are viewing documentation about an older version (1.2.0). View latest version

snowflake.ml.modeling.cluster.MiniBatchKMeans

class snowflake.ml.modeling.cluster.MiniBatchKMeans(*, n_clusters=8, init='k-means++', max_iter=100, batch_size=1024, verbose=0, compute_labels=True, random_state=None, tol=0.0, max_no_improvement=10, init_size=None, n_init='warn', reassignment_ratio=0.01, input_cols: Optional[Union[str, Iterable[str]]] = None, output_cols: Optional[Union[str, Iterable[str]]] = None, label_cols: Optional[Union[str, Iterable[str]]] = None, passthrough_cols: Optional[Union[str, Iterable[str]]] = None, drop_input_cols: Optional[bool] = False, sample_weight_col: Optional[str] = None)

Bases: BaseTransformer

Mini-Batch K-Means clustering For more details on this class, see sklearn.cluster.MiniBatchKMeans

input_cols: Optional[Union[str, List[str]]]

A string or list of strings representing column names that contain features. If this parameter is not specified, all columns in the input DataFrame except the columns specified by label_cols, sample_weight_col, and passthrough_cols parameters are considered input columns. Input columns can also be set after initialization with the set_input_cols method.

label_cols: Optional[Union[str, List[str]]]

This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.

output_cols: Optional[Union[str, List[str]]]

A string or list of strings representing column names that will store the output of predict and transform operations. The length of output_cols must match the expected number of output columns from the specific predictor or transformer class used. If you omit this parameter, output column names are derived by adding an OUTPUT_ prefix to the label column names for supervised estimators, or OUTPUT_<IDX>for unsupervised estimators. These inferred output column names work for predictors, but output_cols must be set explicitly for transformers. In general, explicitly specifying output column names is clearer, especially if you don’t specify the input column names. To transform in place, pass the same names for input_cols and output_cols. be set explicitly for transformers. Output columns can also be set after initialization with the set_output_cols method.

sample_weight_col: Optional[str]

A string representing the column name containing the sample weights. This argument is only required when working with weighted datasets. Sample weight column can also be set after initialization with the set_sample_weight_col method.

passthrough_cols: Optional[Union[str, List[str]]]

A string or a list of strings indicating column names to be excluded from any operations (such as train, transform, or inference). These specified column(s) will remain untouched throughout the process. This option is helpful in scenarios requiring automatic input_cols inference, but need to avoid using specific columns, like index columns, during training or inference. Passthrough columns can also be set after initialization with the set_passthrough_cols method.

drop_input_cols: Optional[bool], default=False

If set, the response of predict(), transform() methods will not contain input columns.

n_clusters: int, default=8

The number of clusters to form as well as the number of centroids to generate.

init: {‘k-means++’, ‘random’}, callable or array-like of shape (n_clusters, n_features), default=’k-means++’

Method for initialization:

‘k-means++’: selects initial cluster centroids using sampling based on an empirical probability distribution of the points’ contribution to the overall inertia. This technique speeds up convergence. The algorithm implemented is “greedy k-means++”. It differs from the vanilla k-means++ by making several trials at each sampling step and choosing the best centroid among them.

‘random’: choose n_clusters observations (rows) at random from data for the initial centroids.

If an array is passed, it should be of shape (n_clusters, n_features) and gives the initial centers.

If a callable is passed, it should take arguments X, n_clusters and a random state and return an initialization.

max_iter: int, default=100

Maximum number of iterations over the complete dataset before stopping independently of any early stopping criterion heuristics.

batch_size: int, default=1024

Size of the mini batches. For faster computations, you can set the batch_size greater than 256 * number of cores to enable parallelism on all cores.

verbose: int, default=0

Verbosity mode.

compute_labels: bool, default=True

Compute label assignment and inertia for the complete dataset once the minibatch optimization has converged in fit.

random_state: int, RandomState instance or None, default=None

Determines random number generation for centroid initialization and random reassignment. Use an int to make the randomness deterministic. See Glossary.

tol: float, default=0.0

Control early stopping based on the relative center changes as measured by a smoothed, variance-normalized of the mean center squared position changes. This early stopping heuristics is closer to the one used for the batch variant of the algorithms but induces a slight computational and memory overhead over the inertia heuristic.

To disable convergence detection based on normalized center change, set tol to 0.0 (default).

max_no_improvement: int, default=10

Control early stopping based on the consecutive number of mini batches that does not yield an improvement on the smoothed inertia.

To disable convergence detection based on inertia, set max_no_improvement to None.

init_size: int, default=None

Number of samples to randomly sample for speeding up the initialization (sometimes at the expense of accuracy): the only algorithm is initialized by running a batch KMeans on a random subset of the data. This needs to be larger than n_clusters.

If None, the heuristic is init_size = 3 * batch_size if 3 * batch_size < n_clusters, else init_size = 3 * n_clusters.

n_init: ‘auto’ or int, default=3

Number of random initializations that are tried. In contrast to KMeans, the algorithm is only run once, using the best of the n_init initializations as measured by inertia. Several runs are recommended for sparse high-dimensional problems (see kmeans_sparse_high_dim).

When n_init=’auto’, the number of runs depends on the value of init: 3 if using init=’random’ or init is a callable; 1 if using init=’k-means++’ or init is an array-like.

reassignment_ratio: float, default=0.01

Control the fraction of the maximum number of counts for a center to be reassigned. A higher value means that low count centers are more easily reassigned, which means that the model will take longer to converge, but should converge in a better clustering. However, too high a value may cause convergence issues, especially with a small batch size.

Base class for all transformers.

Methods

fit(dataset: Union[DataFrame, DataFrame]) MiniBatchKMeans

Compute the centroids on X by chunking it into mini-batches For more details on this function, see sklearn.cluster.MiniBatchKMeans.fit

Raises:

TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.

Args:
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]

Snowpark or Pandas DataFrame.

Returns:

self

fit_predict(dataset: Union[DataFrame, DataFrame]) Union[Any, ndarray[Any, dtype[Any]]]

Compute cluster centers and predict cluster index for each sample For more details on this function, see sklearn.cluster.MiniBatchKMeans.fit_predict

Raises:

TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.

Args:
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]

Snowpark or Pandas DataFrame.

Returns:

Predicted dataset.

fit_transform(dataset: Union[DataFrame, DataFrame]) Union[Any, ndarray[Any, dtype[Any]]]
Returns:

Transformed dataset.

get_input_cols() List[str]

Input columns getter.

Returns:

Input columns.

get_label_cols() List[str]

Label column getter.

Returns:

Label column(s).

get_output_cols() List[str]

Output columns getter.

Returns:

Output columns.

get_params(deep: bool = True) Dict[str, Any]

Get parameters for this transformer.

Args:
deep: If True, will return the parameters for this transformer and

contained subobjects that are transformers.

Returns:

Parameter names mapped to their values.

get_passthrough_cols() List[str]

Passthrough columns getter.

Returns:

Passthrough column(s).

get_sample_weight_col() Optional[str]

Sample weight column getter.

Returns:

Sample weight column.

get_sklearn_args(default_sklearn_obj: Optional[object] = None, sklearn_initial_keywords: Optional[Union[str, Iterable[str]]] = None, sklearn_unused_keywords: Optional[Union[str, Iterable[str]]] = None, snowml_only_keywords: Optional[Union[str, Iterable[str]]] = None, sklearn_added_keyword_to_version_dict: Optional[Dict[str, str]] = None, sklearn_added_kwarg_value_to_version_dict: Optional[Dict[str, Dict[str, str]]] = None, sklearn_deprecated_keyword_to_version_dict: Optional[Dict[str, str]] = None, sklearn_removed_keyword_to_version_dict: Optional[Dict[str, str]] = None) Dict[str, Any]

Get sklearn keyword arguments.

This method enables modifying object parameters for special cases.

Args:
default_sklearn_obj: Sklearn object used to get default parameter values. Necessary when

sklearn_added_keyword_to_version_dict is provided.

sklearn_initial_keywords: Initial keywords in sklearn. sklearn_unused_keywords: Sklearn keywords that are unused in snowml. snowml_only_keywords: snowml only keywords not present in sklearn. sklearn_added_keyword_to_version_dict: Added keywords mapped to the sklearn versions in which they were

added.

sklearn_added_kwarg_value_to_version_dict: Added keyword argument values mapped to the sklearn versions

in which they were added.

sklearn_deprecated_keyword_to_version_dict: Deprecated keywords mapped to the sklearn versions in which

they were deprecated.

sklearn_removed_keyword_to_version_dict: Removed keywords mapped to the sklearn versions in which they

were removed.

Returns:

Sklearn parameter names mapped to their values.

predict(dataset: Union[DataFrame, DataFrame]) Union[DataFrame, DataFrame]

Predict the closest cluster each sample in X belongs to For more details on this function, see sklearn.cluster.MiniBatchKMeans.predict

Raises:

TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.

Args:
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]

Snowpark or Pandas DataFrame.

Returns:

Transformed dataset.

score(dataset: Union[DataFrame, DataFrame]) float

Opposite of the value of X on the K-means objective For more details on this function, see sklearn.cluster.MiniBatchKMeans.score

Raises:

TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.

Args:
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]

Snowpark or Pandas DataFrame.

Returns:

Score.

set_drop_input_cols(drop_input_cols: Optional[bool] = False) None
set_input_cols(input_cols: Optional[Union[str, Iterable[str]]]) MiniBatchKMeans

Input columns setter.

Args:

input_cols: A single input column or multiple input columns.

Returns:

self

set_label_cols(label_cols: Optional[Union[str, Iterable[str]]]) Base

Label column setter.

Args:

label_cols: A single label column or multiple label columns if multi task learning.

Returns:

self

set_output_cols(output_cols: Optional[Union[str, Iterable[str]]]) Base

Output columns setter.

Args:

output_cols: A single output column or multiple output columns.

Returns:

self

set_params(**params: Dict[str, Any]) None

Set the parameters of this transformer.

The method works on simple transformers as well as on nested objects. The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Args:

**params: Transformer parameter names mapped to their values.

Raises:

SnowflakeMLException: Invalid parameter keys.

set_passthrough_cols(passthrough_cols: Optional[Union[str, Iterable[str]]]) Base

Passthrough columns setter.

Args:
passthrough_cols: Column(s) that should not be used or modified by the estimator/transformer.

Estimator/Transformer just passthrough these columns without any modifications.

Returns:

self

set_sample_weight_col(sample_weight_col: Optional[str]) Base

Sample weight column setter.

Args:

sample_weight_col: A single column that represents sample weight.

Returns:

self

to_sklearn() Any

Get sklearn.cluster.MiniBatchKMeans object.

transform(dataset: Union[DataFrame, DataFrame]) Union[DataFrame, DataFrame]

Transform X to a cluster-distance space For more details on this function, see sklearn.cluster.MiniBatchKMeans.transform

Raises:

TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.

Args:
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]

Snowpark or Pandas DataFrame.

Returns:

Transformed dataset.

Attributes

model_signatures

Returns model signature of current class.

Raises:

exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred

Returns:

Dict[str, ModelSignature]: each method and its input output signature