You are viewing documentation about an older version (1.2.0). View latest version

snowflake.ml.modeling.cluster.SpectralClustering

class snowflake.ml.modeling.cluster.SpectralClustering(*, n_clusters=8, eigen_solver=None, n_components=None, random_state=None, n_init=10, gamma=1.0, affinity='rbf', n_neighbors=10, eigen_tol='auto', assign_labels='kmeans', degree=3, coef0=1, kernel_params=None, n_jobs=None, verbose=False, input_cols: Optional[Union[str, Iterable[str]]] = None, output_cols: Optional[Union[str, Iterable[str]]] = None, label_cols: Optional[Union[str, Iterable[str]]] = None, passthrough_cols: Optional[Union[str, Iterable[str]]] = None, drop_input_cols: Optional[bool] = False, sample_weight_col: Optional[str] = None)

Bases: BaseTransformer

Apply clustering to a projection of the normalized Laplacian For more details on this class, see sklearn.cluster.SpectralClustering

input_cols: Optional[Union[str, List[str]]]

A string or list of strings representing column names that contain features. If this parameter is not specified, all columns in the input DataFrame except the columns specified by label_cols, sample_weight_col, and passthrough_cols parameters are considered input columns. Input columns can also be set after initialization with the set_input_cols method.

label_cols: Optional[Union[str, List[str]]]

This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.

output_cols: Optional[Union[str, List[str]]]

A string or list of strings representing column names that will store the output of predict and transform operations. The length of output_cols must match the expected number of output columns from the specific predictor or transformer class used. If you omit this parameter, output column names are derived by adding an OUTPUT_ prefix to the label column names for supervised estimators, or OUTPUT_<IDX>for unsupervised estimators. These inferred output column names work for predictors, but output_cols must be set explicitly for transformers. In general, explicitly specifying output column names is clearer, especially if you don’t specify the input column names. To transform in place, pass the same names for input_cols and output_cols. be set explicitly for transformers. Output columns can also be set after initialization with the set_output_cols method.

sample_weight_col: Optional[str]

A string representing the column name containing the sample weights. This argument is only required when working with weighted datasets. Sample weight column can also be set after initialization with the set_sample_weight_col method.

passthrough_cols: Optional[Union[str, List[str]]]

A string or a list of strings indicating column names to be excluded from any operations (such as train, transform, or inference). These specified column(s) will remain untouched throughout the process. This option is helpful in scenarios requiring automatic input_cols inference, but need to avoid using specific columns, like index columns, during training or inference. Passthrough columns can also be set after initialization with the set_passthrough_cols method.

drop_input_cols: Optional[bool], default=False

If set, the response of predict(), transform() methods will not contain input columns.

n_clusters: int, default=8

The dimension of the projection subspace.

eigen_solver: {‘arpack’, ‘lobpcg’, ‘amg’}, default=None

The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems, but may also lead to instabilities. If None, then 'arpack' is used. See [4]_ for more details regarding ‘lobpcg’.

n_components: int, default=None

Number of eigenvectors to use for the spectral embedding. If None, defaults to n_clusters.

random_state: int, RandomState instance, default=None

A pseudo random number generator used for the initialization of the lobpcg eigenvectors decomposition when eigen_solver == ‘amg’, and for the K-Means initialization. Use an int to make the results deterministic across calls (See Glossary).

n_init: int, default=10

Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. Only used if assign_labels='kmeans'.

gamma: float, default=1.0

Kernel coefficient for rbf, poly, sigmoid, laplacian and chi2 kernels. Ignored for affinity='nearest_neighbors'.

affinity: str or callable, default=’rbf’
How to construct the affinity matrix.
  • ‘nearest_neighbors’: construct the affinity matrix by computing a graph of nearest neighbors.

  • ‘rbf’: construct the affinity matrix using a radial basis function (RBF) kernel.

  • ‘precomputed’: interpret X as a precomputed affinity matrix, where larger values indicate greater similarity between instances.

  • ‘precomputed_nearest_neighbors’: interpret X as a sparse graph of precomputed distances, and construct a binary affinity matrix from the n_neighbors nearest neighbors of each instance.

  • one of the kernels supported by pairwise_kernels().

Only kernels that produce similarity scores (non-negative values that increase with similarity) should be used. This property is not checked by the clustering algorithm.

n_neighbors: int, default=10

Number of neighbors to use when constructing the affinity matrix using the nearest neighbors method. Ignored for affinity='rbf'.

eigen_tol: float, default=”auto”

Stopping criterion for eigendecomposition of the Laplacian matrix. If eigen_tol=”auto” then the passed tolerance will depend on the eigen_solver:

  • If eigen_solver=”arpack”, then eigen_tol=0.0;

  • If eigen_solver=”lobpcg” or eigen_solver=”amg”, then eigen_tol=None which configures the underlying lobpcg solver to automatically resolve the value according to their heuristics. See, scipy.sparse.linalg.lobpcg() for details.

Note that when using eigen_solver=”lobpcg” or eigen_solver=”amg” values of tol<1e-5 may lead to convergence issues and should be avoided.

assign_labels: {‘kmeans’, ‘discretize’, ‘cluster_qr’}, default=’kmeans’

The strategy for assigning labels in the embedding space. There are two ways to assign labels after the Laplacian embedding. k-means is a popular choice, but it can be sensitive to initialization. Discretization is another approach which is less sensitive to random initialization [3]_. The cluster_qr method [5]_ directly extract clusters from eigenvectors in spectral clustering. In contrast to k-means and discretization, cluster_qr has no tuning parameters and runs no iterations, yet may outperform k-means and discretization in terms of both quality and speed.

degree: float, default=3

Degree of the polynomial kernel. Ignored by other kernels.

coef0: float, default=1

Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels.

kernel_params: dict of str to any, default=None

Parameters (keyword arguments) and values for kernel passed as callable object. Ignored by other kernels.

n_jobs: int, default=None

The number of parallel jobs to run when affinity=’nearest_neighbors’ or affinity=’precomputed_nearest_neighbors’. The neighbors search will be done in parallel. None means 1 unless in a joblib.parallel_backend context. -1 means using all processors. See Glossary for more details.

verbose: bool, default=False

Verbosity mode.

Base class for all transformers.

Methods

fit(dataset: Union[DataFrame, DataFrame]) SpectralClustering

Perform spectral clustering from features, or affinity matrix For more details on this function, see sklearn.cluster.SpectralClustering.fit

Raises:

TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.

Args:
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]

Snowpark or Pandas DataFrame.

Returns:

self

fit_predict(dataset: Union[DataFrame, DataFrame]) Union[Any, ndarray[Any, dtype[Any]]]

Perform spectral clustering on X and return cluster labels For more details on this function, see sklearn.cluster.SpectralClustering.fit_predict

Raises:

TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.

Args:
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]

Snowpark or Pandas DataFrame.

Returns:

Predicted dataset.

fit_transform(dataset: Union[DataFrame, DataFrame]) Union[Any, ndarray[Any, dtype[Any]]]
Returns:

Transformed dataset.

get_input_cols() List[str]

Input columns getter.

Returns:

Input columns.

get_label_cols() List[str]

Label column getter.

Returns:

Label column(s).

get_output_cols() List[str]

Output columns getter.

Returns:

Output columns.

get_params(deep: bool = True) Dict[str, Any]

Get parameters for this transformer.

Args:
deep: If True, will return the parameters for this transformer and

contained subobjects that are transformers.

Returns:

Parameter names mapped to their values.

get_passthrough_cols() List[str]

Passthrough columns getter.

Returns:

Passthrough column(s).

get_sample_weight_col() Optional[str]

Sample weight column getter.

Returns:

Sample weight column.

get_sklearn_args(default_sklearn_obj: Optional[object] = None, sklearn_initial_keywords: Optional[Union[str, Iterable[str]]] = None, sklearn_unused_keywords: Optional[Union[str, Iterable[str]]] = None, snowml_only_keywords: Optional[Union[str, Iterable[str]]] = None, sklearn_added_keyword_to_version_dict: Optional[Dict[str, str]] = None, sklearn_added_kwarg_value_to_version_dict: Optional[Dict[str, Dict[str, str]]] = None, sklearn_deprecated_keyword_to_version_dict: Optional[Dict[str, str]] = None, sklearn_removed_keyword_to_version_dict: Optional[Dict[str, str]] = None) Dict[str, Any]

Get sklearn keyword arguments.

This method enables modifying object parameters for special cases.

Args:
default_sklearn_obj: Sklearn object used to get default parameter values. Necessary when

sklearn_added_keyword_to_version_dict is provided.

sklearn_initial_keywords: Initial keywords in sklearn. sklearn_unused_keywords: Sklearn keywords that are unused in snowml. snowml_only_keywords: snowml only keywords not present in sklearn. sklearn_added_keyword_to_version_dict: Added keywords mapped to the sklearn versions in which they were

added.

sklearn_added_kwarg_value_to_version_dict: Added keyword argument values mapped to the sklearn versions

in which they were added.

sklearn_deprecated_keyword_to_version_dict: Deprecated keywords mapped to the sklearn versions in which

they were deprecated.

sklearn_removed_keyword_to_version_dict: Removed keywords mapped to the sklearn versions in which they

were removed.

Returns:

Sklearn parameter names mapped to their values.

set_drop_input_cols(drop_input_cols: Optional[bool] = False) None
set_input_cols(input_cols: Optional[Union[str, Iterable[str]]]) SpectralClustering

Input columns setter.

Args:

input_cols: A single input column or multiple input columns.

Returns:

self

set_label_cols(label_cols: Optional[Union[str, Iterable[str]]]) Base

Label column setter.

Args:

label_cols: A single label column or multiple label columns if multi task learning.

Returns:

self

set_output_cols(output_cols: Optional[Union[str, Iterable[str]]]) Base

Output columns setter.

Args:

output_cols: A single output column or multiple output columns.

Returns:

self

set_params(**params: Dict[str, Any]) None

Set the parameters of this transformer.

The method works on simple transformers as well as on nested objects. The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Args:

**params: Transformer parameter names mapped to their values.

Raises:

SnowflakeMLException: Invalid parameter keys.

set_passthrough_cols(passthrough_cols: Optional[Union[str, Iterable[str]]]) Base

Passthrough columns setter.

Args:
passthrough_cols: Column(s) that should not be used or modified by the estimator/transformer.

Estimator/Transformer just passthrough these columns without any modifications.

Returns:

self

set_sample_weight_col(sample_weight_col: Optional[str]) Base

Sample weight column setter.

Args:

sample_weight_col: A single column that represents sample weight.

Returns:

self

to_sklearn() Any

Get sklearn.cluster.SpectralClustering object.

Attributes

model_signatures

Returns model signature of current class.

Raises:

exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred

Returns:

Dict[str, ModelSignature]: each method and its input output signature