snowflake.ml.modeling.tree.DecisionTreeRegressor¶
- class snowflake.ml.modeling.tree.DecisionTreeRegressor(*, criterion='squared_error', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, ccp_alpha=0.0, input_cols: Optional[Union[str, Iterable[str]]] = None, output_cols: Optional[Union[str, Iterable[str]]] = None, label_cols: Optional[Union[str, Iterable[str]]] = None, passthrough_cols: Optional[Union[str, Iterable[str]]] = None, drop_input_cols: Optional[bool] = False, sample_weight_col: Optional[str] = None)¶
Bases:
BaseTransformer
A decision tree regressor For more details on this class, see sklearn.tree.DecisionTreeRegressor
- Parameters:
input_cols (Optional[Union[str, List[str]]]) – A string or list of strings representing column names that contain features. If this parameter is not specified, all columns in the input DataFrame except the columns specified by label_cols, sample_weight_col, and passthrough_cols parameters are considered input columns. Input columns can also be set after initialization with the set_input_cols method.
label_cols (Optional[Union[str, List[str]]]) – A string or list of strings representing column names that contain labels. Label columns must be specified with this parameter during initialization or with the set_label_cols method before fitting.
output_cols (Optional[Union[str, List[str]]]) – A string or list of strings representing column names that will store the output of predict and transform operations. The length of output_cols must match the expected number of output columns from the specific predictor or transformer class used. If you omit this parameter, output column names are derived by adding an OUTPUT_ prefix to the label column names for supervised estimators, or OUTPUT_<IDX>for unsupervised estimators. These inferred output column names work for predictors, but output_cols must be set explicitly for transformers. In general, explicitly specifying output column names is clearer, especially if you don’t specify the input column names. To transform in place, pass the same names for input_cols and output_cols. be set explicitly for transformers. Output columns can also be set after initialization with the set_output_cols method.
sample_weight_col (Optional[str]) – A string representing the column name containing the sample weights. This argument is only required when working with weighted datasets. Sample weight column can also be set after initialization with the set_sample_weight_col method.
passthrough_cols (Optional[Union[str, List[str]]]) – A string or a list of strings indicating column names to be excluded from any operations (such as train, transform, or inference). These specified column(s) will remain untouched throughout the process. This option is helpful in scenarios requiring automatic input_cols inference, but need to avoid using specific columns, like index columns, during training or inference. Passthrough columns can also be set after initialization with the set_passthrough_cols method.
drop_input_cols (Optional[bool], default=False) – If set, the response of predict(), transform() methods will not contain input columns.
criterion ({"squared_error", "friedman_mse", "absolute_error", "poisson"}, default="squared_error") – The function to measure the quality of a split. Supported criteria are “squared_error” for the mean squared error, which is equal to variance reduction as feature selection criterion and minimizes the L2 loss using the mean of each terminal node, “friedman_mse”, which uses mean squared error with Friedman’s improvement score for potential splits, “absolute_error” for the mean absolute error, which minimizes the L1 loss using the median of each terminal node, and “poisson” which uses reduction in Poisson deviance to find splits.
splitter ({"best", "random"}, default="best") – The strategy used to choose the split at each node. Supported strategies are “best” to choose the best split and “random” to choose the best random split.
max_depth (int, default=None) – The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.
min_samples_split (int or float, default=2) –
The minimum number of samples required to split an internal node:
If int, then consider min_samples_split as the minimum number.
If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the minimum number of samples for each split.
min_samples_leaf (int or float, default=1) –
The minimum number of samples required to be at a leaf node. A split point at any depth will only be considered if it leaves at least
min_samples_leaf
training samples in each of the left and right branches. This may have the effect of smoothing the model, especially in regression.If int, then consider min_samples_leaf as the minimum number.
If float, then min_samples_leaf is a fraction and ceil(min_samples_leaf * n_samples) are the minimum number of samples for each node.
min_weight_fraction_leaf (float, default=0.0) – The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided.
max_features (int, float or {"auto", "sqrt", "log2"}, default=None) –
The number of features to consider when looking for the best split:
If int, then consider max_features features at each split.
If float, then max_features is a fraction and max(1, int(max_features * n_features_in_)) features are considered at each split.
If “sqrt”, then max_features=sqrt(n_features).
If “log2”, then max_features=log2(n_features).
If None, then max_features=n_features.
Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than
max_features
features.random_state (int, RandomState instance or None, default=None) – Controls the randomness of the estimator. The features are always randomly permuted at each split, even if
splitter
is set to"best"
. Whenmax_features < n_features
, the algorithm will selectmax_features
at random at each split before finding the best split among them. But the best found split may vary across different runs, even ifmax_features=n_features
. That is the case, if the improvement of the criterion is identical for several splits and one split has to be selected at random. To obtain a deterministic behaviour during fitting,random_state
has to be fixed to an integer. See Glossary for details.max_leaf_nodes (int, default=None) – Grow a tree with
max_leaf_nodes
in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes.min_impurity_decrease (float, default=0.0) –
A node will be split if this split induces a decrease of the impurity greater than or equal to this value.
The weighted impurity decrease equation is the following:
N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t * left_impurity)
where
N
is the total number of samples,N_t
is the number of samples at the current node,N_t_L
is the number of samples in the left child, andN_t_R
is the number of samples in the right child.N
,N_t
,N_t_R
andN_t_L
all refer to the weighted sum, ifsample_weight
is passed.ccp_alpha (non-negative float, default=0.0) – Complexity parameter used for Minimal Cost-Complexity Pruning. The subtree with the largest cost complexity that is smaller than
ccp_alpha
will be chosen. By default, no pruning is performed. See minimal_cost_complexity_pruning for details.
Base class for all transformers.
Methods
- fit(dataset: Union[DataFrame, DataFrame]) BaseEstimator ¶
Runs universal logics for all fit implementations.
- fit_transform(dataset: Union[DataFrame, DataFrame], output_cols_prefix: str = 'fit_transform_') Union[DataFrame, DataFrame] ¶
Method not supported for this class.
- Raises:
TypeError – Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
- Parameters:
dataset – Union[snowflake.snowpark.DataFrame, pandas.DataFrame] Snowpark or Pandas DataFrame.
output_cols_prefix: Prefix for the response columns :returns: Transformed dataset.
- get_input_cols() List[str] ¶
Input columns getter.
- Returns:
Input columns.
- get_label_cols() List[str] ¶
Label column getter.
- Returns:
Label column(s).
- get_output_cols() List[str] ¶
Output columns getter.
- Returns:
Output columns.
- get_params(deep: bool = True) Dict[str, Any] ¶
Get the snowflake-ml parameters for this transformer.
- Parameters:
deep – If True, will return the parameters for this transformer and contained subobjects that are transformers.
- Returns:
Parameter names mapped to their values.
- get_passthrough_cols() List[str] ¶
Passthrough columns getter.
- Returns:
Passthrough column(s).
- get_sample_weight_col() Optional[str] ¶
Sample weight column getter.
- Returns:
Sample weight column.
- get_sklearn_args(default_sklearn_obj: Optional[object] = None, sklearn_initial_keywords: Optional[Union[str, Iterable[str]]] = None, sklearn_unused_keywords: Optional[Union[str, Iterable[str]]] = None, snowml_only_keywords: Optional[Union[str, Iterable[str]]] = None, sklearn_added_keyword_to_version_dict: Optional[Dict[str, str]] = None, sklearn_added_kwarg_value_to_version_dict: Optional[Dict[str, Dict[str, str]]] = None, sklearn_deprecated_keyword_to_version_dict: Optional[Dict[str, str]] = None, sklearn_removed_keyword_to_version_dict: Optional[Dict[str, str]] = None) Dict[str, Any] ¶
Get sklearn keyword arguments.
This method enables modifying object parameters for special cases.
- Parameters:
default_sklearn_obj – Sklearn object used to get default parameter values. Necessary when sklearn_added_keyword_to_version_dict is provided.
sklearn_initial_keywords – Initial keywords in sklearn.
sklearn_unused_keywords – Sklearn keywords that are unused in snowml.
snowml_only_keywords – snowml only keywords not present in sklearn.
sklearn_added_keyword_to_version_dict – Added keywords mapped to the sklearn versions in which they were added.
sklearn_added_kwarg_value_to_version_dict – Added keyword argument values mapped to the sklearn versions in which they were added.
sklearn_deprecated_keyword_to_version_dict – Deprecated keywords mapped to the sklearn versions in which they were deprecated.
sklearn_removed_keyword_to_version_dict – Removed keywords mapped to the sklearn versions in which they were removed.
- Returns:
Sklearn parameter names mapped to their values.
- predict(dataset: Union[DataFrame, DataFrame]) Union[DataFrame, DataFrame] ¶
Predict class or regression value for X For more details on this function, see sklearn.tree.DecisionTreeRegressor.predict
- Raises:
TypeError – Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
- Parameters:
dataset – Union[snowflake.snowpark.DataFrame, pandas.DataFrame] Snowpark or Pandas DataFrame.
- Returns:
Transformed dataset.
- score(dataset: Union[DataFrame, DataFrame]) float ¶
Return the coefficient of determination of the prediction For more details on this function, see sklearn.tree.DecisionTreeRegressor.score
- Raises:
TypeError – Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
- Parameters:
dataset – Union[snowflake.snowpark.DataFrame, pandas.DataFrame] Snowpark or Pandas DataFrame.
- Returns:
Score.
- score_samples(dataset: Union[DataFrame, DataFrame], output_cols_prefix: str = 'score_samples_') Union[DataFrame, DataFrame] ¶
Method not supported for this class.
- Raises:
TypeError – Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
- Parameters:
dataset – Union[snowflake.snowpark.DataFrame, pandas.DataFrame] Snowpark or Pandas DataFrame.
output_cols_prefix – Prefix for the response columns
- Returns:
Output dataset with probability of the sample for each class in the model.
- set_drop_input_cols(drop_input_cols: Optional[bool] = False) None ¶
- set_input_cols(input_cols: Optional[Union[str, Iterable[str]]]) DecisionTreeRegressor ¶
Input columns setter.
- Parameters:
input_cols – A single input column or multiple input columns.
- Returns:
self
- set_label_cols(label_cols: Optional[Union[str, Iterable[str]]]) Base ¶
Label column setter.
- Parameters:
label_cols – A single label column or multiple label columns if multi task learning.
- Returns:
self
- set_output_cols(output_cols: Optional[Union[str, Iterable[str]]]) Base ¶
Output columns setter.
- Parameters:
output_cols – A single output column or multiple output columns.
- Returns:
self
- set_params(**params: Any) None ¶
Set the parameters of this transformer.
The method works on simple transformers as well as on sklearn compatible pipelines with nested objects, once the transformer has been fit. Nested objects have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
**params – Transformer parameter names mapped to their values.
- Raises:
SnowflakeMLException – Invalid parameter keys.
- set_passthrough_cols(passthrough_cols: Optional[Union[str, Iterable[str]]]) Base ¶
Passthrough columns setter.
- Parameters:
passthrough_cols – Column(s) that should not be used or modified by the estimator/transformer. Estimator/Transformer just passthrough these columns without any modifications.
- Returns:
self
- set_sample_weight_col(sample_weight_col: Optional[str]) Base ¶
Sample weight column setter.
- Parameters:
sample_weight_col – A single column that represents sample weight.
- Returns:
self
- to_sklearn() Any ¶
Get sklearn.tree.DecisionTreeRegressor object.
Attributes
- model_signatures¶
Returns model signature of current class.
- Raises:
SnowflakeMLException – If estimator is not fitted, then model signature cannot be inferred
- Returns:
Dict with each method and its input output signature