modin.pandas.get_dummies¶
- snowflake.snowpark.modin.pandas.general.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False, dtype=None)[source]¶
Convert categorical variable into dummy/indicator variables.
- Parameters:
data (array-like, Series, or
DataFrame
) – Data of which to get dummy indicators.prefix (str, list of str, or dict of str, default None) – String to append DataFrame column names. Pass a list with length equal to the number of columns when calling get_dummies on a DataFrame. Alternatively, prefix can be a dictionary mapping column names to prefixes. Only str, list of str and None is supported for this parameter.
prefix_sep (str, default '_') – If appending prefix, separator/delimiter to use.
dummy_na (bool, default False) – Add a column to indicate NaNs, if False NaNs are ignored. Only the value False is supported for this parameter.
columns (list-like, default None) – Column names in the DataFrame to be encoded. If columns is None then all the columns with string dtype will be converted.
sparse (bool, default False) – Whether the dummy-encoded columns should be backed by a
SparseArray
(True) or a regular NumPy array (False). This parameter is ignored.drop_first (bool, default False) – Whether to get k-1 dummies out of k categorical levels by removing the first level. Only the value False is supported for this parameter.
dtype (dtype, default np.uint8) – Data type for new columns. Only the value None is supported for this parameter.
- Returns:
Dummy-coded data.
- Return type:
Examples
>>> s = pd.Series(list('abca'))
>>> pd.get_dummies(s) a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0
>>> df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'], ... 'C': [1, 2, 3]})
>>> pd.get_dummies(df, prefix=['col1', 'col2']) C col1_a col1_b col2_a col2_b col2_c 0 1 1 0 0 1 0 1 2 0 1 1 0 0 2 3 1 0 0 0 1
>>> pd.get_dummies(pd.Series(list('abcaa'))) a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0 4 1 0 0