modin.pandas.Resampler.max¶
- Resampler.max(numeric_only: bool = False, min_count: int = 0, *args: Any, **kwargs: Any) Union[DataFrame, Series] [source]¶
Compute maximum of resample bins.
- Parameters:
numeric_only (bool, default False) – Include only float, int, boolean columns.
min_count (int, default 0) – The required number of valid values to perform the operation. If fewer than
min_count
non-NA values are present the result will be NA.engine (str, default None) – This parameter is ignored in Snowpark pandas. The execution engine will always be Snowflake.
engine_kwargs (dict, default None) – This parameter is ignored in Snowpark pandas. The execution engine will always be Snowflake.
- Returns:
Computed maximum of values within each resample bin.
- Return type:
Examples
For Series:
>>> lst1 = pd.date_range('2020-01-01', periods=4, freq='1D') >>> ser1 = pd.Series([1, 2, 3, 4], index=lst1) >>> ser1 2020-01-01 1 2020-01-02 2 2020-01-03 3 2020-01-04 4 Freq: None, dtype: int64
>>> ser1.resample('2D').max() 2020-01-01 2 2020-01-03 4 Freq: None, dtype: int64
>>> lst2 = pd.date_range('2020-01-01', periods=4, freq='S') >>> ser2 = pd.Series([1, 2, np.nan, 4], index=lst2) >>> ser2 2020-01-01 00:00:00 1.0 2020-01-01 00:00:01 2.0 2020-01-01 00:00:02 NaN 2020-01-01 00:00:03 4.0 Freq: None, dtype: float64
>>> ser2.resample('2S').max() 2020-01-01 00:00:00 2.0 2020-01-01 00:00:02 4.0 Freq: None, dtype: float64
For DataFrame:
>>> data = [[1, 8], [1, 2], [2, 5], [2, 6]] >>> df1 = pd.DataFrame(data, ... columns=["a", "b"], ... index=pd.date_range('2020-01-01', periods=4, freq='1D')) >>> df1 a b 2020-01-01 1 8 2020-01-02 1 2 2020-01-03 2 5 2020-01-04 2 6
>>> df1.resample('2D').max() a b 2020-01-01 1 8 2020-01-03 2 6
>>> df2 = pd.DataFrame( ... {'A': [1, 2, 3, np.nan], 'B': [np.nan, np.nan, 3, 4]}, ... index=pd.date_range('2020-01-01', periods=4, freq='1S')) >>> df2 A B 2020-01-01 00:00:00 1.0 NaN 2020-01-01 00:00:01 2.0 NaN 2020-01-01 00:00:02 3.0 3.0 2020-01-01 00:00:03 NaN 4.0
>>> df2.resample('2S').max() A B 2020-01-01 00:00:00 2.0 NaN 2020-01-01 00:00:02 3.0 4.0