snowflake.snowpark.DataFrame.to_pandas¶
- DataFrame.to_pandas(*, statement_params: Optional[Dict[str, str]] = None, block: bool = True, **kwargs: Dict[str, Any]) pandas.DataFrame[source]¶
- DataFrame.to_pandas(*, statement_params: Optional[Dict[str, str]] = None, block: bool = False, **kwargs: Dict[str, Any]) AsyncJob
- Executes the query representing this DataFrame and returns the result as a pandas DataFrame. - When the data is too large to fit into memory, you can use - to_pandas_batches().- Parameters:
- statement_params – Dictionary of statement level parameters to be set while executing this action. 
- block – A bool value indicating whether this function will wait until the result is available. When it is - False, this function executes the underlying queries of the dataframe asynchronously and returns an- AsyncJob.
 
 - Note - This method is only available if pandas is installed and available. 
 - 2. If you use - Session.sql()with this method, the input query of- Session.sql()can only be a SELECT statement.- 3. For TIMESTAMP columns: - TIMESTAMP_LTZ and TIMESTAMP_TZ are both converted to datetime64[ns, tz] in pandas, as pandas cannot distinguish between the two. - TIMESTAMP_NTZ is converted to datetime64[ns] (without timezone).