snowflake.snowpark.DataFrameStatFunctions.approx_quantile¶
- DataFrameStatFunctions.approx_quantile(col: Union[Column, str, Iterable[Union[Column, str]]], percentile: Iterable[float], *, statement_params: Optional[Dict[str, str]] = None) Union[List[float], List[List[float]]][source]¶
- For a specified numeric column and a list of desired quantiles, returns an approximate value for the column at each of the desired quantiles. This function uses the t-Digest algorithm. - Examples: - >>> df = session.create_dataframe([1, 2, 3, 4, 5, 6, 7, 8, 9, 0], schema=["a"]) >>> df.stat.approx_quantile("a", [0, 0.1, 0.4, 0.6, 1]) >>> df2 = session.create_dataframe([[0.1, 0.5], [0.2, 0.6], [0.3, 0.7]], schema=["a", "b"]) >>> df2.stat.approx_quantile(["a", "b"], [0, 0.1, 0.6]) - Parameters:
- col – The name of the numeric column. 
- percentile – A list of float values greater than or equal to 0.0 and less than 1.0. 
- statement_params – Dictionary of statement level parameters to be set while executing this action. 
 
- Returns:
- A list of approximate percentile values if - colis a single column name, or a matrix with the dimensions- (len(col) * len(percentile)containing the approximate percentile values if- colis a list of column names.