snowflake.snowpark.DataFrameAIFunctions¶

class snowflake.snowpark.DataFrameAIFunctions(dataframe: snowflake.snowpark.DataFrame)[source]¶

Bases: object

Provides AI-powered functions for a DataFrame.

Methods

agg(task_description, input_column, *[, ...])

Aggregate a column of text data using a natural language task description.

classify(input_column, categories, *[, ...])

Classify text or images into specified categories using AI.

complete(prompt, input_columns, model, *[, ...])

Generate a response (completion) on each row using the specified language model.

count_tokens(model, prompt, *[, output_column])

Count the number of tokens in text for a specified language model.

embed(input_column, model, *[, output_column])

Generate embedding vectors from text or images.

extract(input_column, *[, response_format, ...])

Extract structured information from text or files using a response schema.

filter(predicate, input_columns, *)

Filter rows using AI-powered boolean classification.

parse_document(input_column, *[, output_column])

Extract content from a document (OCR or layout parsing) as JSON text.

sentiment(input_column[, categories, ...])

Extract sentiment analysis from text content.

similarity(input1, input2, *[, output_column])

Compute similarity scores between two columns using AI-powered embeddings.

split_text_markdown_header(text_to_split, ...)

Split Markdown-formatted text into structured chunks based on header levels.

split_text_recursive_character(...[, ...])

Split text into chunks using recursive character-based splitting.

summarize_agg(input_column, *[, output_column])

Summarize a column of text data using AI.

transcribe(input_column, *[, output_column])

Transcribe text from an audio file with optional timestamps and speaker labels.