snowflake.snowpark.DataFrame.to_pandas¶
- DataFrame.to_pandas(*, statement_params: Optional[Dict[str, str]] = None, block: bool = True, _emit_ast: bool = True, **kwargs: Dict[str, Any]) pandas.DataFrame [source]¶
- DataFrame.to_pandas(*, statement_params: Optional[Dict[str, str]] = None, block: bool = False, _emit_ast: bool = True, **kwargs: Dict[str, Any]) AsyncJob
Executes the query representing this DataFrame and returns the result as a pandas DataFrame.
When the data is too large to fit into memory, you can use
to_pandas_batches()
.- Parameters:
statement_params – Dictionary of statement level parameters to be set while executing this action.
block – A bool value indicating whether this function will wait until the result is available. When it is
False
, this function executes the underlying queries of the dataframe asynchronously and returns anAsyncJob
.
Note
This method is only available if pandas is installed and available.
2. If you use
Session.sql()
with this method, the input query ofSession.sql()
can only be a SELECT statement.3. For TIMESTAMP columns: - TIMESTAMP_LTZ and TIMESTAMP_TZ are both converted to datetime64[ns, tz] in pandas, as pandas cannot distinguish between the two. - TIMESTAMP_NTZ is converted to datetime64[ns] (without timezone).