modin.pandas.DataFrame.select_dtypes¶
- DataFrame.select_dtypes(include: ListLike | str | type | None = None, exclude: ListLike | str | type | None = None) DataFrame [source]¶
Return a subset of the
DataFrame
’s columns based on the column dtypes. At least one of the parameters must be specified, and the include/exclude lists must not overlap.- Parameters:
include (Optional[ListLike | type], default None) – A list of dtypes to include in the result.
exclude (Optional[ListLike | type], default None) – A list of dtypes to exclude from the result.
- Returns:
The subset of the frame including the dtypes in include and excluding the dtypes in exclude. If a column’s dtype is a subtype of a type in both include and exclude (such as if include=[np.number] and exclude=[int]), then the column will be excluded.
- Return type:
Examples
>>> df = pd.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3})
>>> df.dtypes a int64 b bool c float64 dtype: object
Including all number columns:
>>> df.select_dtypes("number") a c 0 1 1.0 1 2 2.0 2 1 1.0 3 2 2.0 4 1 1.0 5 2 2.0
Including only bool columns:
>>> df.select_dtypes(include=[bool]) b 0 True 1 False 2 True 3 False 4 True 5 False
Excluding int columns:
>>> df.select_dtypes(exclude=[int]) b c 0 True 1.0 1 False 2.0 2 True 1.0 3 False 2.0 4 True 1.0 5 False 2.0