snowflake.ml.modeling.metrics.d2_absolute_error_score

snowflake.ml.modeling.metrics.d2_absolute_error_score(*, df: DataFrame, y_true_col_names: Union[str, List[str]], y_pred_col_names: Union[str, List[str]], sample_weight_col_name: Optional[str] = None, multioutput: Union[str, _SupportsArray[dtype], _NestedSequence[_SupportsArray[dtype]], bool, int, float, complex, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]] = 'uniform_average') Union[float, ndarray[Any, dtype[float64]]]

D^2 regression score function, fraction of absolute error explained.

Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A model that always uses the empirical median of y_true as constant prediction, disregarding the input features, gets a D^2 score of 0.0.

Args:
df: snowpark.DataFrame

Input dataframe.

y_true_col_names: string or list of strings

Column name(s) representing actual values.

y_pred_col_names: string or list of strings

Column name(s) representing predicted values.

sample_weight_col_name: string, default=None

Column name representing sample weights.

multioutput: {‘raw_values’, ‘uniform_average’} or array-like of shape (n_outputs,), default=’uniform_average’

Defines aggregating of multiple output values. Array-like value defines weights used to average errors. ‘raw_values’:

Returns a full set of errors in case of multioutput input.

‘uniform_average’:

Errors of all outputs are averaged with uniform weight.

Returns:
score: float or ndarray of floats

The D^2 score with an absolute error deviance or ndarray of scores if ‘multioutput’ is ‘raw_values’.