modin.pandas.to_datetime¶
- modin.pandas.to_datetime(arg: DatetimeScalarOrArrayConvertible | DictConvertible | pd.DataFrame | Series, errors: DateTimeErrorChoices = 'raise', dayfirst: bool = False, yearfirst: bool = False, utc: bool = False, format: str | None = None, exact: bool | lib.NoDefault = _NoDefault.no_default, unit: str | None = None, infer_datetime_format: lib.NoDefault | bool = _NoDefault.no_default, origin: Any = 'unix', cache: bool = True) pd.DatetimeIndex | Series | DatetimeScalar | NaTType | None[source]¶
Convert argument to datetime.
This function converts a scalar, array-like,
SeriesorDataFrame/dict-like to a pandas datetime object.- Parameters:
arg (int, float, str, datetime, list, tuple, 1-d array, Series,
DataFrame/dict-like) – The object to convert to a datetime. If aDataFrameis provided, the method expects minimally the following columns:"year","month","day".errors ({'ignore', 'raise', 'coerce'}, default 'raise') –
If
'raise', then invalid parsing will raise an exception.If
'coerce', then invalid parsing will be set asNaT.If
'ignore', then invalid parsing will return the input.
dayfirst (bool, default False) –
Specify a date parse order if arg is str or is list-like. If
True, parses dates with the day first, e.g."10/11/12"is parsed as2012-11-10.Warning
dayfirst=Trueis not strict, but will prefer to parse with day first. If a delimited date string cannot be parsed in accordance with the given dayfirst option, e.g.to_datetime(['31-12-2021']), then a warning will be shown.yearfirst (bool, default False) –
Specify a date parse order if arg is str or is list-like.
If
Trueparses dates with the year first, e.g."10/11/12"is parsed as2010-11-12.If both dayfirst and yearfirst are
True, yearfirst is preceded (same asdateutil).
Warning
yearfirst=Trueis not strict, but will prefer to parse with year first.utc (bool, default None) –
Control timezone-related parsing, localization and conversion.
If
True, the function always returns a timezone-aware UTC-localizedTimestamp,SeriesorDatetimeIndex. To do this, timezone-naive inputs are localized as UTC, while timezone-aware inputs are converted to UTC.If
False(default), inputs will not be coerced to UTC. Timezone-naive inputs will remain naive, while timezone-aware ones will keep their time offsets. Limitations exist for mixed offsets (typically, daylight savings), see Examples section for details.
See also: pandas general documentation about timezone conversion and localization.
format (str, default None) – The strftime to parse time, e.g.
"%d/%m/%Y". Note that"%f"will parse all the way up to nanoseconds. See strftime documentation for more information on choices.exact (bool, default True) –
Control how format is used:
If
True, require an exact format match.If
False, allow the format to match anywhere in the target string.
unit (str, default 'ns') – The unit of the arg (D,s,ms,us,ns) denote the unit, which is an integer or float number. This will be based off the origin. Example, with
unit='ms'andorigin='unix', this would calculate the number of milliseconds to the unix epoch start.infer_datetime_format (bool, default False) – If
Trueand no format is given, attempt to infer the format of the datetime strings based on the first non-NaN element, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by ~5-10x.origin (scalar, default 'unix') –
Define the reference date. The numeric values would be parsed as number of units (defined by unit) since this reference date.
If
'unix'(or POSIX) time; origin is set to 1970-01-01.If
'julian', unit must be'D', and origin is set to beginning of Julian Calendar. Julian day number0is assigned to the day starting at noon on January 1, 4713 BC.If Timestamp convertible, origin is set to Timestamp identified by origin.
cache (bool, default True) – cache parameter is ignored with Snowflake backend, i.e., no caching will be applied
- Returns:
If parsing succeeded. Return type depends on input (types in parenthesis correspond to fallback in case of unsuccessful timezone or out-of-range timestamp parsing):
scalar:
Timestamp(ordatetime.datetime)array-like:
DatetimeIndex(or :class:Seriesofobjectdtype containingdatetime.datetime)Series:
Seriesofdatetime64dtype (or :class:Seriesofobjectdtype containingdatetime.datetime)DataFrame:
Seriesofdatetime64dtype (orSeriesofobjectdtype containingdatetime.datetime)
- Return type:
datetime
- Raises:
ParserError – When parsing a date from string fails.
ValueError – When another datetime conversion error happens. For example when one of ‘year’, ‘month’, day’ columns is missing in a
DataFrame, or when a Timezone-awaredatetime.datetimeis found in an array-like of mixed time offsets, andutc=False.
See also
DataFrame.astypeCast argument to a specified dtype.
to_timedeltaConvert argument to timedelta.
convert_dtypesConvert dtypes.
Notes
Many input types are supported, and lead to different output types:
scalars can be int, float, str, datetime object (from stdlib
datetimemodule ornumpy). They are converted toTimestampwhen possible, otherwise they are converted todatetime.datetime. None/NaN/null scalars are converted toNaT.array-like can contain int, float, str, datetime objects. They are converted to
DatetimeIndexwhen possible, otherwise they are converted toIndexwithobjectdtype, containingdatetime.datetime. None/NaN/null entries are converted toNaTin both cases.Series are converted to
Serieswithdatetime64dtype when possible, otherwise they are converted toSerieswithobjectdtype, containingdatetime.datetime. None/NaN/null entries are converted toNaTin both cases.DataFrame/dict-like are converted to
Serieswithdatetime64dtype. For each row a datetime is created from assembling the various dataframe columns. Column keys can be common abbreviations like [‘year’, ‘month’, ‘day’, ‘minute’, ‘second’, ‘ms’, ‘us’, ‘ns’]) or plurals of the same.
The following causes are responsible for
datetime.datetimeobjects being returned (possibly inside anIndexor aSerieswithobjectdtype) instead of a proper pandas designated type (TimestamporSerieswithdatetime64dtype):when any input element is before
Timestamp.minor afterTimestamp.max, see timestamp limitations.when
utc=False(default) and the input is an array-like orSeriescontaining mixed naive/aware datetime, or aware with mixed time offsets. Note that this happens in the (quite frequent) situation when the timezone has a daylight savings policy. In that case you may wish to useutc=True.
Examples
Handling various input formats
Assembling a datetime from multiple columns of a
DataFrame. The keys can be common abbreviations like [‘year’, ‘month’, ‘day’, ‘minute’, ‘second’, ‘ms’, ‘us’, ‘ns’]) or plurals of the same>>> df = pd.DataFrame({'year': [2015, 2016], ... 'month': [2, 3], ... 'day': [4, 5]}) >>> pd.to_datetime(df) 0 2015-02-04 1 2016-03-05 dtype: datetime64[ns]
Passing
infer_datetime_format=Truecan often-times speedup a parsing if it’s not an ISO8601 format exactly, but in a regular format.>>> s = pd.Series(['3/11/2000', '3/12/2000', '3/13/2000'] * 1000) >>> s.head() 0 3/11/2000 1 3/12/2000 2 3/13/2000 3 3/11/2000 4 3/12/2000 dtype: object
Using a unix epoch time
>>> pd.to_datetime(1490195805, unit='s') Timestamp('2017-03-22 15:16:45') >>> pd.to_datetime(1490195805433502912, unit='ns') Timestamp('2017-03-22 15:16:45.433502912')
Warning
For float arg, precision rounding might happen. To prevent unexpected behavior use a fixed-width exact type.
Using a non-unix epoch origin
>>> pd.to_datetime([1, 2, 3], unit='D', ... origin=pd.Timestamp('1960-01-01')) DatetimeIndex(['1960-01-02', '1960-01-03', '1960-01-04'], dtype='datetime64[ns]', freq=None)
Non-convertible date/times
If a date does not meet the timestamp limitations, passing
errors='ignore'will return the original input instead of raising any exception.Passing
errors='coerce'will force an out-of-bounds date toNaT, in addition to forcing non-dates (or non-parseable dates) toNaT.>>> pd.to_datetime(['13000101', 'abc'], format='%Y%m%d', errors='coerce') DatetimeIndex(['NaT', 'NaT'], dtype='datetime64[ns]', freq=None)
Timezones and time offsets
The default behaviour (
utc=False) is as follows:Timezone-naive inputs are kept as timezone-naive
DatetimeIndex:
>>> pd.to_datetime(['2018-10-26 12:00:00', '2018-10-26 13:00:15']) DatetimeIndex(['2018-10-26 12:00:00', '2018-10-26 13:00:15'], dtype='datetime64[ns]', freq=None)
>>> pd.to_datetime(['2018-10-26 12:00:00 -0500', '2018-10-26 13:00:00 -0500']) DatetimeIndex(['2018-10-26 12:00:00-05:00', '2018-10-26 13:00:00-05:00'], dtype='datetime64[ns, UTC-05:00]', freq=None)
Use right format to convert to timezone-aware type (Note that when call Snowpark pandas API to_pandas() the timezone-aware output will always be converted to session timezone):
>>> pd.to_datetime(['2018-10-26 12:00:00 -0500', '2018-10-26 13:00:00 -0500'], format="%Y-%m-%d %H:%M:%S %z") DatetimeIndex(['2018-10-26 12:00:00-05:00', '2018-10-26 13:00:00-05:00'], dtype='datetime64[ns, UTC-05:00]', freq=None)
Timezone-aware inputs with mixed time offsets (for example issued from a timezone with daylight savings, such as Europe/Paris):
>>> pd.to_datetime(['2020-10-25 02:00:00 +0200', '2020-10-25 04:00:00 +0100']) DatetimeIndex([2020-10-25 02:00:00+02:00, 2020-10-25 04:00:00+01:00], dtype='object', freq=None)
>>> pd.to_datetime(['2020-10-25 02:00:00 +0200', '2020-10-25 04:00:00 +0100'], format="%Y-%m-%d %H:%M:%S %z") DatetimeIndex([2020-10-25 02:00:00+02:00, 2020-10-25 04:00:00+01:00], dtype='object', freq=None)
Setting
utc=Truemakes sure always convert to timezone-aware outputs:Timezone-naive inputs are localized based on the session timezone
>>> pd.to_datetime(['2018-10-26 12:00', '2018-10-26 13:00'], utc=True) DatetimeIndex(['2018-10-26 12:00:00+00:00', '2018-10-26 13:00:00+00:00'], dtype='datetime64[ns, UTC]', freq=None)
Timezone-aware inputs are converted to session timezone
>>> pd.to_datetime(['2018-10-26 12:00:00 -0530', '2018-10-26 12:00:00 -0500'], ... utc=True) DatetimeIndex(['2018-10-26 17:30:00+00:00', '2018-10-26 17:00:00+00:00'], dtype='datetime64[ns, UTC]', freq=None)