snowflake.snowpark.DataFrame.to_pandas_batches¶
- DataFrame.to_pandas_batches(*, statement_params: Optional[Dict[str, str]] = None, block: bool = True, _emit_ast: bool = True, **kwargs: Dict[str, Any]) Iterator[pandas.DataFrame][source]¶
- DataFrame.to_pandas_batches(*, statement_params: Optional[Dict[str, str]] = None, block: bool = False, _emit_ast: bool = True, **kwargs: Dict[str, Any]) AsyncJob
Executes the query representing this DataFrame and returns an iterator of pandas dataframes (containing a subset of rows) that you can use to retrieve the results.
Unlike
to_pandas(), this method does not load all data into memory at once.Example:
>>> df = session.create_dataframe([[1, 2], [3, 4]], schema=["a", "b"]) >>> for pandas_df in df.to_pandas_batches(): ... print(pandas_df) A B 0 1 2 1 3 4
- Parameters:
statement_params – Dictionary of statement level parameters to be set while executing this action.
block – A bool value indicating whether this function will wait until the result is available. When it is
False, this function executes the underlying queries of the dataframe asynchronously and returns anAsyncJob.
Note
This method is only available if pandas is installed and available.
2. If you use
Session.sql()with this method, the input query ofSession.sql()can only be a SELECT statement.