snowflake.ml.modeling.metrics.mean_squared_error¶
- snowflake.ml.modeling.metrics.mean_squared_error(*, df: DataFrame, y_true_col_names: Union[str, list[str]], y_pred_col_names: Union[str, list[str]], sample_weight_col_name: Optional[str] = None, multioutput: Union[str, _SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], bool, int, float, complex, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]] = 'uniform_average', squared: bool = True) Union[float, ndarray[Any, dtype[float64]]]¶
- Mean squared error regression loss. - Parameters:
- df – snowpark.DataFrame Input dataframe. 
- y_true_col_names – string or list of strings Column name(s) representing actual values. 
- y_pred_col_names – string or list of strings Column name(s) representing predicted values. 
- sample_weight_col_name – string, default=None Column name representing sample weights. 
- multioutput – - {‘raw_values’, ‘uniform_average’} or array-like of shape (n_outputs,), default=’uniform_average’ Defines aggregating of multiple output values. Array-like value defines weights used to average errors. ‘raw_values’: - Returns a full set of errors in case of multioutput input. - ’uniform_average’:
- Errors of all outputs are averaged with uniform weight. 
 
- squared – boolean, default=True If True returns MSE value, if False returns RMSE value. 
 
- Returns:
- float or ndarray of floats
- A non-negative floating point value (the best value is 0.0), or an array of floating point values, one for each individual target. 
 
- Return type:
- loss