snowflake.ml.modeling.tree.DecisionTreeClassifier¶
- class snowflake.ml.modeling.tree.DecisionTreeClassifier(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, class_weight=None, ccp_alpha=0.0, input_cols: Optional[Union[str, Iterable[str]]] = None, output_cols: Optional[Union[str, Iterable[str]]] = None, label_cols: Optional[Union[str, Iterable[str]]] = None, drop_input_cols: Optional[bool] = False, sample_weight_col: Optional[str] = None)¶
Bases:
BaseTransformer
A decision tree classifier For more details on this class, see sklearn.tree.DecisionTreeClassifier
- criterion: {“gini”, “entropy”, “log_loss”}, default=”gini”
The function to measure the quality of a split. Supported criteria are “gini” for the Gini impurity and “log_loss” and “entropy” both for the Shannon information gain, see tree_mathematical_formulation.
- splitter: {“best”, “random”}, default=”best”
The strategy used to choose the split at each node. Supported strategies are “best” to choose the best split and “random” to choose the best random split.
- max_depth: int, default=None
The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.
- min_samples_split: int or float, default=2
The minimum number of samples required to split an internal node:
If int, then consider min_samples_split as the minimum number.
If float, then min_samples_split is a fraction and ceil(min_samples_split * n_samples) are the minimum number of samples for each split.
- min_samples_leaf: int or float, default=1
The minimum number of samples required to be at a leaf node. A split point at any depth will only be considered if it leaves at least
min_samples_leaf
training samples in each of the left and right branches. This may have the effect of smoothing the model, especially in regression.If int, then consider min_samples_leaf as the minimum number.
If float, then min_samples_leaf is a fraction and ceil(min_samples_leaf * n_samples) are the minimum number of samples for each node.
- min_weight_fraction_leaf: float, default=0.0
The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided.
- max_features: int, float or {“auto”, “sqrt”, “log2”}, default=None
The number of features to consider when looking for the best split:
If int, then consider max_features features at each split.
If float, then max_features is a fraction and max(1, int(max_features * n_features_in_)) features are considered at each split.
If “sqrt”, then max_features=sqrt(n_features).
If “log2”, then max_features=log2(n_features).
If None, then max_features=n_features.
Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than
max_features
features.- random_state: int, RandomState instance or None, default=None
Controls the randomness of the estimator. The features are always randomly permuted at each split, even if
splitter
is set to"best"
. Whenmax_features < n_features
, the algorithm will selectmax_features
at random at each split before finding the best split among them. But the best found split may vary across different runs, even ifmax_features=n_features
. That is the case, if the improvement of the criterion is identical for several splits and one split has to be selected at random. To obtain a deterministic behaviour during fitting,random_state
has to be fixed to an integer. See Glossary for details.- max_leaf_nodes: int, default=None
Grow a tree with
max_leaf_nodes
in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes.- min_impurity_decrease: float, default=0.0
A node will be split if this split induces a decrease of the impurity greater than or equal to this value.
The weighted impurity decrease equation is the following:
N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t * left_impurity)
where
N
is the total number of samples,N_t
is the number of samples at the current node,N_t_L
is the number of samples in the left child, andN_t_R
is the number of samples in the right child.N
,N_t
,N_t_R
andN_t_L
all refer to the weighted sum, ifsample_weight
is passed.- class_weight: dict, list of dict or “balanced”, default=None
Weights associated with classes in the form
{class_label: weight}
. If None, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y.Note that for multioutput (including multilabel) weights should be defined for each class of every column in its own dict. For example, for four-class multilabel classification weights should be [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of [{1:1}, {2:5}, {3:1}, {4:1}].
The “balanced” mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as
n_samples / (n_classes * np.bincount(y))
For multi-output, the weights of each column of y will be multiplied.
Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified.
- ccp_alpha: non-negative float, default=0.0
Complexity parameter used for Minimal Cost-Complexity Pruning. The subtree with the largest cost complexity that is smaller than
ccp_alpha
will be chosen. By default, no pruning is performed. See minimal_cost_complexity_pruning for details.- input_cols: Optional[Union[str, List[str]]]
A string or list of strings representing column names that contain features. If this parameter is not specified, all columns in the input DataFrame except the columns specified by label_cols and sample-weight_col parameters are considered input columns.
- label_cols: Optional[Union[str, List[str]]]
A string or list of strings representing column names that contain labels. This is a required param for estimators, as there is no way to infer these columns. If this parameter is not specified, then object is fitted without labels(Like a transformer).
- output_cols: Optional[Union[str, List[str]]]
A string or list of strings representing column names that will store the output of predict and transform operations. The length of output_cols mus match the expected number of output columns from the specific estimator or transformer class used. If this parameter is not specified, output column names are derived by adding an OUTPUT_ prefix to the label column names. These inferred output column names work for estimator’s predict() method, but output_cols must be set explicitly for transformers.
- sample_weight_col: Optional[str]
A string representing the column name containing the examples’ weights. This argument is only required when working with weighted datasets.
- drop_input_cols: Optional[bool], default=False
If set, the response of predict(), transform() methods will not contain input columns.
Methods
fit
(dataset)Build a decision tree classifier from the training set (X, y) For more details on this function, see sklearn.tree.DecisionTreeClassifier.fit
predict
(dataset)Predict class or regression value for X For more details on this function, see sklearn.tree.DecisionTreeClassifier.predict
predict_log_proba
(dataset[, output_cols_prefix])Predict class probabilities of the input samples X For more details on this function, see sklearn.tree.DecisionTreeClassifier.predict_proba
predict_proba
(dataset[, output_cols_prefix])Predict class probabilities of the input samples X For more details on this function, see sklearn.tree.DecisionTreeClassifier.predict_proba
score
(dataset)Return the mean accuracy on the given test data and labels For more details on this function, see sklearn.tree.DecisionTreeClassifier.score
set_input_cols
(input_cols)Input columns setter.
to_sklearn
()Get sklearn.tree.DecisionTreeClassifier object.
Attributes
model_signatures
Returns model signature of current class.