snowflake.ml.modeling.mixture.GaussianMixtureΒΆ
- class snowflake.ml.modeling.mixture.GaussianMixture(*, n_components=1, covariance_type='full', tol=0.001, reg_covar=1e-06, max_iter=100, n_init=1, init_params='kmeans', weights_init=None, means_init=None, precisions_init=None, random_state=None, warm_start=False, verbose=0, verbose_interval=10, input_cols: Optional[Union[str, Iterable[str]]] = None, output_cols: Optional[Union[str, Iterable[str]]] = None, label_cols: Optional[Union[str, Iterable[str]]] = None, drop_input_cols: Optional[bool] = False, sample_weight_col: Optional[str] = None)ΒΆ
Bases:
BaseTransformer
Gaussian Mixture For more details on this class, see sklearn.mixture.GaussianMixture
- n_components: int, default=1
The number of mixture components.
- covariance_type: {βfullβ, βtiedβ, βdiagβ, βsphericalβ}, default=βfullβ
String describing the type of covariance parameters to use. Must be one of:
βfullβ: each component has its own general covariance matrix.
βtiedβ: all components share the same general covariance matrix.
βdiagβ: each component has its own diagonal covariance matrix.
βsphericalβ: each component has its own single variance.
- tol: float, default=1e-3
The convergence threshold. EM iterations will stop when the lower bound average gain is below this threshold.
- reg_covar: float, default=1e-6
Non-negative regularization added to the diagonal of covariance. Allows to assure that the covariance matrices are all positive.
- max_iter: int, default=100
The number of EM iterations to perform.
- n_init: int, default=1
The number of initializations to perform. The best results are kept.
- init_params: {βkmeansβ, βk-means++β, βrandomβ, βrandom_from_dataβ}, default=βkmeansβ
The method used to initialize the weights, the means and the precisions. String must be one of:
βkmeansβ: responsibilities are initialized using kmeans.
βk-means++β: use the k-means++ method to initialize.
βrandomβ: responsibilities are initialized randomly.
βrandom_from_dataβ: initial means are randomly selected data points.
- weights_init: array-like of shape (n_components, ), default=None
The user-provided initial weights. If it is None, weights are initialized using the init_params method.
- means_init: array-like of shape (n_components, n_features), default=None
The user-provided initial means, If it is None, means are initialized using the init_params method.
- precisions_init: array-like, default=None
The user-provided initial precisions (inverse of the covariance matrices). If it is None, precisions are initialized using the βinit_paramsβ method. The shape depends on βcovariance_typeβ:
(n_components,) if 'spherical', (n_features, n_features) if 'tied', (n_components, n_features) if 'diag', (n_components, n_features, n_features) if 'full'
- random_state: int, RandomState instance or None, default=None
Controls the random seed given to the method chosen to initialize the parameters (see init_params). In addition, it controls the generation of random samples from the fitted distribution (see the method sample). Pass an int for reproducible output across multiple function calls. See Glossary.
- warm_start: bool, default=False
If βwarm_startβ is True, the solution of the last fitting is used as initialization for the next call of fit(). This can speed up convergence when fit is called several times on similar problems. In that case, βn_initβ is ignored and only a single initialization occurs upon the first call. See the Glossary.
- verbose: int, default=0
Enable verbose output. If 1 then it prints the current initialization and each iteration step. If greater than 1 then it prints also the log probability and the time needed for each step.
- verbose_interval: int, default=10
Number of iteration done before the next print.
- input_cols: Optional[Union[str, List[str]]]
A string or list of strings representing column names that contain features. If this parameter is not specified, all columns in the input DataFrame except the columns specified by label_cols and sample-weight_col parameters are considered input columns.
- label_cols: Optional[Union[str, List[str]]]
A string or list of strings representing column names that contain labels. This is a required param for estimators, as there is no way to infer these columns. If this parameter is not specified, then object is fitted without labels(Like a transformer).
- output_cols: Optional[Union[str, List[str]]]
A string or list of strings representing column names that will store the output of predict and transform operations. The length of output_cols mus match the expected number of output columns from the specific estimator or transformer class used. If this parameter is not specified, output column names are derived by adding an OUTPUT_ prefix to the label column names. These inferred output column names work for estimatorβs predict() method, but output_cols must be set explicitly for transformers.
- sample_weight_col: Optional[str]
A string representing the column name containing the examplesβ weights. This argument is only required when working with weighted datasets.
- drop_input_cols: Optional[bool], default=False
If set, the response of predict(), transform() methods will not contain input columns.
Methods
fit
(dataset)Estimate model parameters with the EM algorithm For more details on this function, see sklearn.mixture.GaussianMixture.fit
predict
(dataset)Predict the labels for the data samples in X using trained model For more details on this function, see sklearn.mixture.GaussianMixture.predict
predict_proba
(dataset[, output_cols_prefix])Evaluate the components' density for each sample For more details on this function, see sklearn.mixture.GaussianMixture.predict_proba
score
(dataset)Compute the per-sample average log-likelihood of the given data X For more details on this function, see sklearn.mixture.GaussianMixture.score
set_input_cols
(input_cols)Input columns setter.
to_sklearn
()Get sklearn.mixture.GaussianMixture object.
Attributes
model_signatures
Returns model signature of current class.