You are viewing documentation about an older version (1.7.0). View latest version

snowflake.ml.modeling.neighbors.LocalOutlierFactor

class snowflake.ml.modeling.neighbors.LocalOutlierFactor(*, n_neighbors=20, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, contamination='auto', novelty=False, n_jobs=None, input_cols: Optional[Union[str, Iterable[str]]] = None, output_cols: Optional[Union[str, Iterable[str]]] = None, label_cols: Optional[Union[str, Iterable[str]]] = None, passthrough_cols: Optional[Union[str, Iterable[str]]] = None, drop_input_cols: Optional[bool] = False, sample_weight_col: Optional[str] = None)

Bases: BaseTransformer

Unsupervised Outlier Detection using the Local Outlier Factor (LOF) For more details on this class, see sklearn.neighbors.LocalOutlierFactor

Parameters:
  • input_cols (Optional[Union[str, List[str]]]) – A string or list of strings representing column names that contain features. If this parameter is not specified, all columns in the input DataFrame except the columns specified by label_cols, sample_weight_col, and passthrough_cols parameters are considered input columns. Input columns can also be set after initialization with the set_input_cols method.

  • label_cols (Optional[Union[str, List[str]]]) – A string or list of strings representing column names that contain labels. Label columns must be specified with this parameter during initialization or with the set_label_cols method before fitting.

  • output_cols (Optional[Union[str, List[str]]]) – A string or list of strings representing column names that will store the output of predict and transform operations. The length of output_cols must match the expected number of output columns from the specific predictor or transformer class used. If you omit this parameter, output column names are derived by adding an OUTPUT_ prefix to the label column names for supervised estimators, or OUTPUT_<IDX>for unsupervised estimators. These inferred output column names work for predictors, but output_cols must be set explicitly for transformers. In general, explicitly specifying output column names is clearer, especially if you don’t specify the input column names. To transform in place, pass the same names for input_cols and output_cols. be set explicitly for transformers. Output columns can also be set after initialization with the set_output_cols method.

  • sample_weight_col (Optional[str]) – A string representing the column name containing the sample weights. This argument is only required when working with weighted datasets. Sample weight column can also be set after initialization with the set_sample_weight_col method.

  • passthrough_cols (Optional[Union[str, List[str]]]) – A string or a list of strings indicating column names to be excluded from any operations (such as train, transform, or inference). These specified column(s) will remain untouched throughout the process. This option is helpful in scenarios requiring automatic input_cols inference, but need to avoid using specific columns, like index columns, during training or inference. Passthrough columns can also be set after initialization with the set_passthrough_cols method.

  • drop_input_cols (Optional[bool], default=False) – If set, the response of predict(), transform() methods will not contain input columns.

  • n_neighbors (int, default=20) – Number of neighbors to use by default for kneighbors() queries. If n_neighbors is larger than the number of samples provided, all samples will be used.

  • algorithm ({'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto') –

    Algorithm used to compute the nearest neighbors:

    • ’ball_tree’ will use BallTree

    • ’kd_tree’ will use KDTree

    • ’brute’ will use a brute-force search.

    • ’auto’ will attempt to decide the most appropriate algorithm based on the values passed to fit() method.

    Note: fitting on sparse input will override the setting of this parameter, using brute force.

  • leaf_size (int, default=30) – Leaf is size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem.

  • metric (str or callable, default='minkowski') –

    Metric to use for distance computation. Default is “minkowski”, which results in the standard Euclidean distance when p = 2. See the documentation of scipy.spatial.distance and the metrics listed in distance_metrics for valid metric values.

    If metric is “precomputed”, X is assumed to be a distance matrix and must be square during fit. X may be a sparse graph, in which case only “nonzero” elements may be considered neighbors.

    If metric is a callable function, it takes two arrays representing 1D vectors as inputs and must return one value indicating the distance between those vectors. This works for Scipy’s metrics, but is less efficient than passing the metric name as a string.

  • p (float, default=2) – Parameter for the Minkowski metric from sklearn.metrics.pairwise_distances(). When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

  • metric_params (dict, default=None) – Additional keyword arguments for the metric function.

  • contamination ('auto' or float, default='auto') –

    The amount of contamination of the data set, i.e. the proportion of outliers in the data set. When fitting this is used to define the threshold on the scores of the samples.

    • if ‘auto’, the threshold is determined as in the original paper,

    • if a float, the contamination should be in the range (0, 0.5].

  • novelty (bool, default=False) – By default, LocalOutlierFactor is only meant to be used for outlier detection (novelty=False). Set novelty to True if you want to use LocalOutlierFactor for novelty detection. In this case be aware that you should only use predict, decision_function and score_samples on new unseen data and not on the training set; and note that the results obtained this way may differ from the standard LOF results.

  • n_jobs (int, default=None) – The number of parallel jobs to run for neighbors search. None means 1 unless in a joblib.parallel_backend context. -1 means using all processors. See Glossary for more details.

Base class for all transformers.

Methods

decision_function(dataset: Union[DataFrame, DataFrame], output_cols_prefix: str = 'decision_function_') Union[DataFrame, DataFrame]

Shifted opposite of the Local Outlier Factor of X For more details on this function, see sklearn.neighbors.LocalOutlierFactor.decision_function

Raises:

TypeError – Supported dataset types: snowpark.DataFrame, pandas.DataFrame.

Parameters:
  • dataset – Union[snowflake.snowpark.DataFrame, pandas.DataFrame] Snowpark or Pandas DataFrame.

  • output_cols_prefix – str Prefix for the response columns

Returns:

Output dataset with results of the decision function for the samples in input dataset.

fit(dataset: Union[DataFrame, DataFrame]) BaseEstimator

Runs universal logics for all fit implementations.

fit_predict(dataset: Union[DataFrame, DataFrame], output_cols_prefix: str = 'fit_predict_') Union[DataFrame, DataFrame]

Fit the model to the training set X and return the labels For more details on this function, see sklearn.neighbors.LocalOutlierFactor.fit_predict

Raises:

TypeError – Supported dataset types: snowpark.DataFrame, pandas.DataFrame.

Parameters:

dataset – Union[snowflake.snowpark.DataFrame, pandas.DataFrame] Snowpark or Pandas DataFrame.

output_cols_prefix: Prefix for the response columns :returns: Predicted dataset.

fit_transform(dataset: Union[DataFrame, DataFrame], output_cols_prefix: str = 'fit_transform_') Union[DataFrame, DataFrame]

Method not supported for this class.

Raises:

TypeError – Supported dataset types: snowpark.DataFrame, pandas.DataFrame.

Parameters:

dataset – Union[snowflake.snowpark.DataFrame, pandas.DataFrame] Snowpark or Pandas DataFrame.

output_cols_prefix: Prefix for the response columns :returns: Transformed dataset.

get_input_cols() List[str]

Input columns getter.

Returns:

Input columns.

get_label_cols() List[str]

Label column getter.

Returns:

Label column(s).

get_output_cols() List[str]

Output columns getter.

Returns:

Output columns.

get_params(deep: bool = True) Dict[str, Any]

Get the snowflake-ml parameters for this transformer.

Parameters:

deep – If True, will return the parameters for this transformer and contained subobjects that are transformers.

Returns:

Parameter names mapped to their values.

get_passthrough_cols() List[str]

Passthrough columns getter.

Returns:

Passthrough column(s).

get_sample_weight_col() Optional[str]

Sample weight column getter.

Returns:

Sample weight column.

get_sklearn_args(default_sklearn_obj: Optional[object] = None, sklearn_initial_keywords: Optional[Union[str, Iterable[str]]] = None, sklearn_unused_keywords: Optional[Union[str, Iterable[str]]] = None, snowml_only_keywords: Optional[Union[str, Iterable[str]]] = None, sklearn_added_keyword_to_version_dict: Optional[Dict[str, str]] = None, sklearn_added_kwarg_value_to_version_dict: Optional[Dict[str, Dict[str, str]]] = None, sklearn_deprecated_keyword_to_version_dict: Optional[Dict[str, str]] = None, sklearn_removed_keyword_to_version_dict: Optional[Dict[str, str]] = None) Dict[str, Any]

Get sklearn keyword arguments.

This method enables modifying object parameters for special cases.

Parameters:
  • default_sklearn_obj – Sklearn object used to get default parameter values. Necessary when sklearn_added_keyword_to_version_dict is provided.

  • sklearn_initial_keywords – Initial keywords in sklearn.

  • sklearn_unused_keywords – Sklearn keywords that are unused in snowml.

  • snowml_only_keywords – snowml only keywords not present in sklearn.

  • sklearn_added_keyword_to_version_dict – Added keywords mapped to the sklearn versions in which they were added.

  • sklearn_added_kwarg_value_to_version_dict – Added keyword argument values mapped to the sklearn versions in which they were added.

  • sklearn_deprecated_keyword_to_version_dict – Deprecated keywords mapped to the sklearn versions in which they were deprecated.

  • sklearn_removed_keyword_to_version_dict – Removed keywords mapped to the sklearn versions in which they were removed.

Returns:

Sklearn parameter names mapped to their values.

kneighbors(dataset: Union[DataFrame, DataFrame], n_neighbors: Optional[int] = None, return_distance: bool = True, output_cols_prefix: str = 'kneighbors_') Union[DataFrame, DataFrame]

Find the K-neighbors of a point For more details on this function, see sklearn.neighbors.LocalOutlierFactor.kneighbors

Raises:

TypeError – Supported dataset types: snowpark.DataFrame, pandas.DataFrame.

Parameters:
  • dataset – Union[snowflake.snowpark.DataFrame, pandas.DataFrame] Snowpark or Pandas DataFrame.

  • output_cols_prefix – str Prefix for the response columns

Returns:

Output dataset with results of the K-neighbors for the samples in input dataset.

predict(dataset: Union[DataFrame, DataFrame]) Union[DataFrame, DataFrame]

Predict the labels (1 inlier, -1 outlier) of X according to LOF For more details on this function, see sklearn.neighbors.LocalOutlierFactor.predict

Raises:

TypeError – Supported dataset types: snowpark.DataFrame, pandas.DataFrame.

Parameters:

dataset – Union[snowflake.snowpark.DataFrame, pandas.DataFrame] Snowpark or Pandas DataFrame.

Returns:

Transformed dataset.

score_samples(dataset: Union[DataFrame, DataFrame], output_cols_prefix: str = 'score_samples_') Union[DataFrame, DataFrame]

Opposite of the Local Outlier Factor of X For more details on this function, see sklearn.neighbors.LocalOutlierFactor.score_samples

Raises:

TypeError – Supported dataset types: snowpark.DataFrame, pandas.DataFrame.

Parameters:
  • dataset – Union[snowflake.snowpark.DataFrame, pandas.DataFrame] Snowpark or Pandas DataFrame.

  • output_cols_prefix – Prefix for the response columns

Returns:

Output dataset with probability of the sample for each class in the model.

set_drop_input_cols(drop_input_cols: Optional[bool] = False) None
set_input_cols(input_cols: Optional[Union[str, Iterable[str]]]) LocalOutlierFactor

Input columns setter.

Parameters:

input_cols – A single input column or multiple input columns.

Returns:

self

set_label_cols(label_cols: Optional[Union[str, Iterable[str]]]) Base

Label column setter.

Parameters:

label_cols – A single label column or multiple label columns if multi task learning.

Returns:

self

set_output_cols(output_cols: Optional[Union[str, Iterable[str]]]) Base

Output columns setter.

Parameters:

output_cols – A single output column or multiple output columns.

Returns:

self

set_params(**params: Any) None

Set the parameters of this transformer.

The method works on simple transformers as well as on sklearn compatible pipelines with nested objects, once the transformer has been fit. Nested objects have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:

**params – Transformer parameter names mapped to their values.

Raises:

SnowflakeMLException – Invalid parameter keys.

set_passthrough_cols(passthrough_cols: Optional[Union[str, Iterable[str]]]) Base

Passthrough columns setter.

Parameters:

passthrough_cols – Column(s) that should not be used or modified by the estimator/transformer. Estimator/Transformer just passthrough these columns without any modifications.

Returns:

self

set_sample_weight_col(sample_weight_col: Optional[str]) Base

Sample weight column setter.

Parameters:

sample_weight_col – A single column that represents sample weight.

Returns:

self

to_sklearn() Any

Get sklearn.neighbors.LocalOutlierFactor object.

Attributes

model_signatures

Returns model signature of current class.

Raises:

SnowflakeMLException – If estimator is not fitted, then model signature cannot be inferred

Returns:

Dict with each method and its input output signature