modin.pandas.Resampler.fillna¶
- Resampler.fillna(method: str, limit: Optional[int] = None)[source]¶
Fill missing values introduced by upsampling. Missing values that existed in the original data will not be modified.
- Parameters:
method ({'pad', 'backfill', 'ffill', 'bfill', 'nearest'}) – Method to use for filling holes in resampled data. Note that only ‘ffill’ and ‘pad’ are currently supported. ‘pad’ or ‘ffill’: use previous valid observation to fill gap (forward fill). ‘backfill’ or ‘bfill’: use next valid observation to fill gap. ‘nearest’: use nearest valid observation to fill gap.
limit (int, optional) – This parameter is not supported and will raise NotImplementedError.
- Returns:
An upsampled Series or
DataFrame
with missing values filled.- Return type:
Series
orDataFrame
Examples
>>> s = pd.Series([1, 2, 3], index=pd.date_range('20180101', periods=3, freq='h')) >>> s 2018-01-01 00:00:00 1 2018-01-01 01:00:00 2 2018-01-01 02:00:00 3 Freq: None, dtype: int64 >>> s.resample('30min').fillna("pad") 2018-01-01 00:00:00 1 2018-01-01 00:30:00 1 2018-01-01 01:00:00 2 2018-01-01 01:30:00 2 2018-01-01 02:00:00 3 Freq: None, dtype: int64 >>> s.resample('30min').fillna("backfill") 2018-01-01 00:00:00 1 2018-01-01 00:30:00 2 2018-01-01 01:00:00 2 2018-01-01 01:30:00 3 2018-01-01 02:00:00 3 Freq: None, dtype: int64 >>> sm = pd.Series([1, None, 3], ... index=pd.date_range('20180101', periods=3, freq='h')) >>> sm 2018-01-01 00:00:00 1.0 2018-01-01 01:00:00 NaN 2018-01-01 02:00:00 3.0 Freq: None, dtype: float64 >>> sm.resample('30min').fillna('pad') 2018-01-01 00:00:00 1.0 2018-01-01 00:30:00 1.0 2018-01-01 01:00:00 NaN 2018-01-01 01:30:00 NaN 2018-01-01 02:00:00 3.0 Freq: None, dtype: float64 >>> sm.resample('30min').fillna('backfill') 2018-01-01 00:00:00 1.0 2018-01-01 00:30:00 NaN 2018-01-01 01:00:00 NaN 2018-01-01 01:30:00 3.0 2018-01-01 02:00:00 3.0 Freq: None, dtype: float64