modin.pandas.Resampler.firstΒΆ
- Resampler.first(numeric_only: bool = False, min_count: int = 0, skipna: bool = True, *args: Any, **kwargs: Any)[source]ΒΆ
Compute the first entry of each column within each group.
Defaults to skipping NA elements.
- Parameters:
numeric_only (bool, default False) β Include only float, int, boolean columns.
min_count (int, default -1) β The required number of valid values to perform the operation. If fewer than
min_count
valid values are present the result will be NA.skipna (bool, default True) β Exclude NA/null values. If an entire row/column is NA, the result will be NA.
- Returns:
First values within each group.
- Return type:
Series
orDataFrame
Examples
For Series:
>>> lst1 = pd.date_range('2020-01-01', periods=4, freq='1D') >>> ser1 = pd.Series([1, 2, 3, 4], index=lst1) >>> ser1 2020-01-01 1 2020-01-02 2 2020-01-03 3 2020-01-04 4 Freq: None, dtype: int64
>>> ser1.resample('2D').first() 2020-01-01 1 2020-01-03 3 Freq: None, dtype: int64
>>> lst2 = pd.date_range('2020-01-01', periods=4, freq='S') >>> ser2 = pd.Series([1, 2, np.nan, 4], index=lst2) >>> ser2 2020-01-01 00:00:00 1.0 2020-01-01 00:00:01 2.0 2020-01-01 00:00:02 NaN 2020-01-01 00:00:03 4.0 Freq: None, dtype: float64
>>> ser2.resample('2S').first() 2020-01-01 00:00:00 1.0 2020-01-01 00:00:02 4.0 Freq: None, dtype: float64
For DataFrame:
>>> data = [[1, 8, 2], [1, 2, 5], [2, 5, 8], [2, 6, 9]] >>> df = pd.DataFrame(data, ... columns=["a", "b", "c"], ... index=pd.date_range('2020-01-01', periods=4, freq='1D')) >>> df a b c 2020-01-01 1 8 2 2020-01-02 1 2 5 2020-01-03 2 5 8 2020-01-04 2 6 9
>>> df.resample('2D').first() a b c 2020-01-01 1 8 2 2020-01-03 2 5 8