modin.pandas.DataFrame.dropna¶
- DataFrame.dropna(*, axis: Axis = 0, how: str | NoDefault = _NoDefault.no_default, thresh: int | NoDefault = _NoDefault.no_default, subset: IndexLabel = None, inplace: bool = False)[source]¶
Remove missing values.
- Parameters:
axis ({0 or 'index', 1 or 'columns'}, default 0) –
Determine if rows or columns which contain missing values are removed.
0, or ‘index’ : Drop rows which contain missing values.
1, or ‘columns’ : Drop columns which contain missing value.
Changed in version 1.0.0: Pass tuple or list to drop on multiple axes. Only a single axis is allowed.
how ({'any', 'all'}, default 'any') –
Determine if row or column is removed from DataFrame, when we have at least one NA or all NA.
’any’ : If any NA values are present, drop that row or column.
’all’ : If all values are NA, drop that row or column.
thresh (int, optional) – Require that many non-NA values. Cannot be combined with how.
subset (column label or sequence of labels, optional) – Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include.
inplace (bool, default False) – Whether to modify the DataFrame rather than creating a new one.
- Returns:
DataFrame with NA entries dropped from it or None if
inplace=True
.- Return type:
See also
DataFrame.isna
Indicate missing values.
DataFrame.notna
Indicate existing (non-missing) values.
DataFrame.fillna
Replace missing values.
Series.dropna
Drop missing values.
Index.dropna
Drop missing indices.
Examples
>>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], ... "toy": [None, 'Batmobile', 'Bullwhip'], ... "born": [pd.NaT, pd.Timestamp("1940-04-25"), ... pd.NaT]}) >>> df name toy born 0 Alfred None NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT
Drop the rows where at least one element is missing.
>>> df.dropna() name toy born 1 Batman Batmobile 1940-04-25
Drop the rows where all elements are missing.
>>> df.dropna(how='all') name toy born 0 Alfred None NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT
Keep only the rows with at least 2 non-NA values.
>>> df.dropna(thresh=2) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT
Define in which columns to look for missing values.
>>> df.dropna(subset=['name', 'toy']) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT
Keep the DataFrame with valid entries in the same variable.
>>> df.dropna(inplace=True) >>> df name toy born 1 Batman Batmobile 1940-04-25