modin.pandas.DataFrame.rename¶
- DataFrame.rename(mapper: Renamer | None = None, *, index: Renamer | None = None, columns: Renamer | None = None, axis: Axis | None = None, copy: bool | None = None, inplace: bool = False, level: Level | None = None, errors: IgnoreRaise = 'ignore') DataFrame | None [source]¶
Rename columns or index labels.
Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error.
- Parameters:
mapper (dict-like or function) – Dict-like or function transformations to apply to that axis’ values. Use either
mapper
andaxis
to specify the axis to target withmapper
, orindex
andcolumns
.index (dict-like or function) – Alternative to specifying axis (
mapper, axis=0
is equivalent toindex=mapper
).columns (dict-like or function) – Alternative to specifying axis (
mapper, axis=1
is equivalent tocolumns=mapper
).axis ({0 or 'index', 1 or 'columns'}, default 0) – Axis to target with
mapper
. Can be either the axis name (‘index’, ‘columns’) or number (0, 1). The default is ‘index’.copy (bool, default True) – Also copy underlying data. copy has been ignored with Snowflake execution engine.
inplace (bool, default False) – Whether to modify the DataFrame rather than creating a new one. If True then value of copy is ignored.
level (int or level name, default None) – In case of a MultiIndex, only rename labels in the specified level.
errors ({'ignore', 'raise'}, default 'ignore') – If ‘raise’, raise a KeyError when a dict-like mapper, index, or columns contains labels that are not present in the Index being transformed. If ‘ignore’, existing keys will be renamed and extra keys will be ignored.
- Returns:
DataFrame with the renamed axis labels or None if
inplace=True
.- Return type:
DataFrame or None
- Raises:
KeyError – If any of the labels is not found in the selected axis and “errors=’raise’”.
See also
DataFrame.rename_axis
Set the name of the axis.
Examples
DataFrame.rename
supports two calling conventions(index=index_mapper, columns=columns_mapper, ...)
(mapper, axis={'index', 'columns'}, ...)
We highly recommend using keyword arguments to clarify your intent.
Rename columns using a mapping:
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6
Rename index using a mapping:
>>> df.rename(index={0: "x", 1: "y", 2: "z"}) A B x 1 4 y 2 5 z 3 6
Cast index labels to a different type:
>>> df.index Index([0, 1, 2], dtype='int64')
>>> df.rename(columns={"A": "a", "B": "b", "C": "c"}, errors="raise") Traceback (most recent call last): ... KeyError: "['C'] not found in axis"
Using axis-style parameters:
>>> df.rename(str.lower, axis='columns') a b 0 1 4 1 2 5 2 3 6
>>> df.rename({1: 2, 2: 4}, axis='index') A B 0 1 4 2 2 5 4 3 6