modin.pandas.DataFrame.to_csv¶
- DataFrame.to_csv(path_or_buf=None, sep=',', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, mode='w', encoding=None, compression='infer', quoting=None, quotechar='"', lineterminator=None, chunksize=None, date_format=None, doublequote=True, escapechar=None, decimal='.', errors: str = 'strict', storage_options: Optional[dict[str, Any]] = None)[source]¶
Write object to a comma-separated values (csv) file. This can write csv file either to local filesystem or to snowflake stage. Filepath staring with @ is treated as snowflake stage location.
Note: Writing to local filesystem supports all parameters but writing to snowflake stage does not support float_format, mode, encoding, quoting, quotechar, lineterminator, doublequote and decimal parameters. Also when writing to snowflake stage, chuncksize, errors and storage_options parameters are ignored.
- Parameters:
path_or_buf (str, path object, file-like object, or None, default None) – String, path object (implementing os.PathLike[str]), or file-like object implementing a write() function. If None, the result is returned as a string. If a non-binary file object is passed, it should be opened with newline=’’, disabling universal newlines. If a binary file object is passed, mode might need to contain a ‘b’.
sep (str, default ',') – String of length 1. Field delimiter for the output file.
na_rep (str, default '') – Missing data representation.
float_format (str, Callable, default None) – Format string for floating point numbers. If a Callable is given, it takes precedence over other numeric formatting parameters, like decimal.
columns (sequence, optional) – Columns to write.
header (bool or list of str, default True) – Write out the column names. If a list of strings is given it is assumed to be aliases for the column names.
index (bool, default True) – Write row names (index).
index_label (str or sequence, or False, default None) – Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the object uses MultiIndex. If False do not print fields for index names. Use index_label=False for easier importing in R.
mode ({{'w', 'x', 'a'}}, default 'w') –
Forwarded to either open(mode=) or fsspec.open(mode=) to control the file opening. Typical values include:
’w’, truncate the file first.
’x’, exclusive creation, failing if the file already exists.
’a’, append to the end of file if it exists.
encoding (str, optional) – A string representing the encoding to use in the output file, defaults to ‘utf-8’. encoding is not supported if path_or_buf is a non-binary file object.
compression (str or dict, default 'infer') –
For on-the-fly compression of the output data. If ‘infer’ and ‘%s’ is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, ‘.xz’, ‘.zst’, ‘.tar’, ‘.tar.gz’, ‘.tar.xz’ or ‘.tar.bz2’ (otherwise no compression). Set to
None
for no compression. Can also be a dict with key'method'
set to one of {'zip'
,'gzip'
,'bz2'
,'zstd'
,'xz'
,'tar'
} and other key-value pairs are forwarded tozipfile.ZipFile
,gzip.GzipFile
,bz2.BZ2File
,zstandard.ZstdCompressor
,lzma.LZMAFile
ortarfile.TarFile
, respectively. As an example, the following could be passed for faster compression and to create a reproducible gzip archive:compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}
.Note: Supported compression algorithms are different when writing to snowflake stage. Please refer to https://docs.snowflake.com/en/sql-reference/sql/copy-into-table#type-csv for supported compression algorithms.
quoting (optional constant from csv module) – Defaults to csv.QUOTE_MINIMAL. If you have set a float_format then floats are converted to strings and thus csv.QUOTE_NONNUMERIC will treat them as non-numeric.
quotechar (str, default '"') – String of length 1. Character used to quote fields.
lineterminator (str, optional) – The newline character or character sequence to use in the output file. Defaults to os.linesep, which depends on the OS in which this method is called (’n’ for linux, ‘rn’ for Windows, i.e.).
chunksize (int or None) – Rows to write at a time.
date_format (str, default None) – Format string for datetime objects.
doublequote (bool, default True) – Control quoting of quotechar inside a field.
escapechar (str, default None) – String of length 1. Character used to escape sep and quotechar when appropriate.
decimal (str, default '.') – Character recognized as decimal separator. E.g. use ‘,’ for European data.
errors (str, default 'strict') – Specifies how encoding and decoding errors are to be handled. See the errors argument for
open()
for a full list of options.storage_options (dict, optional) – Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to
urllib.request.Request
as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded tofsspec.open
. Please seefsspec
andurllib
for more details, and for more examples on storage options refer here.
- Returns:
If path_or_buf is None, returns the resulting csv format as a string. Otherwise returns None.
- Return type:
None or str
See also
read_csv
Load a CSV file into a DataFrame.
to_excel
Write DataFrame to an Excel file.
Examples
Create ‘out.csv’ containing ‘df’ without indices
>>> df = pd.DataFrame({'name': ['Raphael', 'Donatello'], ... 'mask': ['red', 'purple'], ... 'weapon': ['sai', 'bo staff']}) >>> df.to_csv('out.csv', index=False)
Create ‘out.zip’ containing ‘out.csv’
>>> df.to_csv(index=False) >>> compression_opts = dict(method='zip', ... archive_name='out.csv') >>> df.to_csv('out.zip', index=False, ... compression=compression_opts)
To write a csv file to a new folder or nested folder you will first need to create it using either Pathlib or os:
>>> from pathlib import Path >>> filepath = Path('folder/subfolder/out.csv') >>> filepath.parent.mkdir(parents=True, exist_ok=True) >>> df.to_csv(filepath)
>>> import os >>> os.makedirs('folder/subfolder', exist_ok=True) >>> df.to_csv('folder/subfolder/out.csv')