snowflake.ml.modeling.svm.SVC

class snowflake.ml.modeling.svm.SVC(*, C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=- 1, decision_function_shape='ovr', break_ties=False, random_state=None, input_cols: Optional[Union[str, Iterable[str]]] = None, output_cols: Optional[Union[str, Iterable[str]]] = None, label_cols: Optional[Union[str, Iterable[str]]] = None, drop_input_cols: Optional[bool] = False, sample_weight_col: Optional[str] = None)

Bases: BaseTransformer

C-Support Vector Classification For more details on this class, see sklearn.svm.SVC

C: float, default=1.0

Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. The penalty is a squared l2 penalty.

kernel: {‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’} or callable, default=’rbf’

Specifies the kernel type to be used in the algorithm. If none is given, ‘rbf’ will be used. If a callable is given it is used to pre-compute the kernel matrix from data matrices; that matrix should be an array of shape (n_samples, n_samples).

degree: int, default=3

Degree of the polynomial kernel function (‘poly’). Must be non-negative. Ignored by all other kernels.

gamma: {‘scale’, ‘auto’} or float, default=’scale’

Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’.

  • if gamma='scale' (default) is passed then it uses 1 / (n_features * X.var()) as value of gamma,

  • if ‘auto’, uses 1 / n_features

  • if float, must be non-negative.

coef0: float, default=0.0

Independent term in kernel function. It is only significant in ‘poly’ and ‘sigmoid’.

shrinking: bool, default=True

Whether to use the shrinking heuristic. See the User Guide.

probability: bool, default=False

Whether to enable probability estimates. This must be enabled prior to calling fit, will slow down that method as it internally uses 5-fold cross-validation, and predict_proba may be inconsistent with predict. Read more in the User Guide.

tol: float, default=1e-3

Tolerance for stopping criterion.

cache_size: float, default=200

Specify the size of the kernel cache (in MB).

class_weight: dict or ‘balanced’, default=None

Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The “balanced” mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as n_samples / (n_classes * np.bincount(y)).

verbose: bool, default=False

Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context.

max_iter: int, default=-1

Hard limit on iterations within solver, or -1 for no limit.

decision_function_shape: {‘ovo’, ‘ovr’}, default=’ovr’

Whether to return a one-vs-rest (‘ovr’) decision function of shape (n_samples, n_classes) as all other classifiers, or the original one-vs-one (‘ovo’) decision function of libsvm which has shape (n_samples, n_classes * (n_classes - 1) / 2). However, note that internally, one-vs-one (‘ovo’) is always used as a multi-class strategy to train models; an ovr matrix is only constructed from the ovo matrix. The parameter is ignored for binary classification.

break_ties: bool, default=False

If true, decision_function_shape='ovr', and number of classes > 2, predict will break ties according to the confidence values of decision_function; otherwise the first class among the tied classes is returned. Please note that breaking ties comes at a relatively high computational cost compared to a simple predict.

random_state: int, RandomState instance or None, default=None

Controls the pseudo random number generation for shuffling the data for probability estimates. Ignored when probability is False. Pass an int for reproducible output across multiple function calls. See Glossary.

input_cols: Optional[Union[str, List[str]]]

A string or list of strings representing column names that contain features. If this parameter is not specified, all columns in the input DataFrame except the columns specified by label_cols and sample-weight_col parameters are considered input columns.

label_cols: Optional[Union[str, List[str]]]

A string or list of strings representing column names that contain labels. This is a required param for estimators, as there is no way to infer these columns. If this parameter is not specified, then object is fitted without labels(Like a transformer).

output_cols: Optional[Union[str, List[str]]]

A string or list of strings representing column names that will store the output of predict and transform operations. The length of output_cols mus match the expected number of output columns from the specific estimator or transformer class used. If this parameter is not specified, output column names are derived by adding an OUTPUT_ prefix to the label column names. These inferred output column names work for estimator’s predict() method, but output_cols must be set explicitly for transformers.

sample_weight_col: Optional[str]

A string representing the column name containing the examples’ weights. This argument is only required when working with weighted datasets.

drop_input_cols: Optional[bool], default=False

If set, the response of predict(), transform() methods will not contain input columns.

Methods

decision_function(dataset[, output_cols_prefix])

Evaluate the decision function for the samples in X For more details on this function, see sklearn.svm.SVC.decision_function

fit(dataset)

Fit the SVM model according to the given training data For more details on this function, see sklearn.svm.SVC.fit

predict(dataset)

Perform classification on samples in X For more details on this function, see sklearn.svm.SVC.predict

predict_log_proba(dataset[, output_cols_prefix])

Compute probabilities of possible outcomes for samples in X For more details on this function, see sklearn.svm.SVC.predict_proba

predict_proba(dataset[, output_cols_prefix])

Compute probabilities of possible outcomes for samples in X For more details on this function, see sklearn.svm.SVC.predict_proba

score(dataset)

Return the mean accuracy on the given test data and labels For more details on this function, see sklearn.svm.SVC.score

set_input_cols(input_cols)

Input columns setter.

to_sklearn()

Get sklearn.svm.SVC object.

Attributes

model_signatures

Returns model signature of current class.