snowflake.snowpark.DataFrame.to_pandas¶
- DataFrame.to_pandas(*, statement_params: Optional[Dict[str, str]] = None, block: bool = True, _emit_ast: bool = True, **kwargs: Dict[str, Any]) pandas.DataFrame[source]¶
- DataFrame.to_pandas(*, statement_params: Optional[Dict[str, str]] = None, block: bool = False, _emit_ast: bool = True, **kwargs: Dict[str, Any]) AsyncJob
Executes the query representing this DataFrame and returns the result as a pandas DataFrame.
When the data is too large to fit into memory, you can use
to_pandas_batches().- Parameters:
statement_params – Dictionary of statement level parameters to be set while executing this action.
block – A bool value indicating whether this function will wait until the result is available. When it is
False, this function executes the underlying queries of the dataframe asynchronously and returns anAsyncJob.
Note
This method is only available if pandas is installed and available.
2. If you use
Session.sql()with this method, the input query ofSession.sql()can only be a SELECT statement.3. For TIMESTAMP columns: - TIMESTAMP_LTZ and TIMESTAMP_TZ are both converted to datetime64[ns, tz] in pandas, as pandas cannot distinguish between the two. - TIMESTAMP_NTZ is converted to datetime64[ns] (without timezone).