modin.pandas.DataFrame.cummin¶
- DataFrame.cummin(axis=None, skipna=True, *args, **kwargs) Self[source]¶
- Return cumulative minimum over a BasePandasDataset axis. - Parameters:
- axis ({0 or 'index', 1 or 'columns'}, default 0) – The index or the name of the axis. 0 is equivalent to None or ‘index’. For Series this parameter is unused and defaults to 0. 
- skipna (bool, default True) – Exclude NA/null values. If an entire row/column is NA, the result will be NA. 
- *args – Additional keywords have no effect but might be accepted for compatibility with NumPy. 
- **kwargs – Additional keywords have no effect but might be accepted for compatibility with NumPy. 
 
- Returns:
- Return cumulative minimum of Series or DataFrame. 
- Return type:
 - Examples - Series - >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 - By default, NA values are ignored. - >>> s.cummin() 0 2.0 1 NaN 2 2.0 3 -1.0 4 -1.0 dtype: float64 - To include NA values in the operation, use skipna=False: - >>> s.cummin(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 - DataFrame - >>> df = pd.DataFrame([[2.0, 1.0], [3.0, np.nan], [1.0, 0.0]], columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 - By default, iterates over rows and finds the minimum in each column. This is equivalent to axis=None or axis=’index’. - >>> df.cummin() A B 0 2.0 1.0 1 2.0 NaN 2 1.0 0.0